[1]李戎,杨萌,刘林霞,等.水下FG圆柱壳临界载荷和固有频率预测方法[J].郑州大学学报(工学版),2021,42(01):70-76.[doi:10.13705/j.issn.1671-6833.2020.03.009]
 LI Rong,YANG Meng,LIU Linxia,et al.Prediction Method for Critical Buckling Pressure and Natural Frequency of Submerged Functionally Graded Cylindrical Shell[J].Journal of Zhengzhou University (Engineering Science),2021,42(01):70-76.[doi:10.13705/j.issn.1671-6833.2020.03.009]
点击复制

水下FG圆柱壳临界载荷和固有频率预测方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42卷
期数:
2021年01期
页码:
70-76
栏目:
出版日期:
2021-03-14

文章信息/Info

Title:
Prediction Method for Critical Buckling Pressure and Natural Frequency of Submerged Functionally Graded Cylindrical Shell
作者:
李戎杨萌刘林霞梁斌
河南科技大学土木工程学院;

Author(s):
LI Rong YANG Meng LIU Linxia LIANG Bin
School of Civil Engineering, Henan University of Science and Technology, Luoyang 471023, China
关键词:
Keywords:
submerged functionally graded cylindrical shell critical buckling pressure natural frequency hydrostatic pressure prediction method
分类号:
TB535+.1
DOI:
10.13705/j.issn.1671-6833.2020.03.009
文献标志码:
A
摘要:
针对水下功能梯度(FG)圆柱壳振动预测方法的不足,本文提出了一种适用于水下FG圆柱壳的屈曲临界载荷和固有频率预测方法。采用Flügge理论和波动法建立静水压力下FG圆柱壳耦合振动特征方程,使用牛顿迭代法求出静水压力下FG圆柱壳的固有频率,进而得到FG圆柱壳固有频率的平方和静水压力呈线性关系这一重要结论。基于此结论,通过使用线性拟合方法,最少仅需三组固有频率数据即可在保证精确度的基础上快速建立静水压力下FG圆柱壳固有频率的趋势线方程,从而得到屈曲临界载荷预测值以及任意静水压力下固有频率预测值。通过多组算例对比分析,证明该方法预测结果与实际结果几乎完全一致,预测精度高,计算量小,便于实际应用。
Abstract:
In order to overcome the lack of prediction method for the vibration of submerged functionally graded (FG) cylindrical shell, a prediction method for the critical buckling pressure and natural frequency of submerged FG cylindrical shell was presented. The coupled vibration characteristic equation of system was established based on the Flügge theory and wave propagation method. The data of natural frequencies under different hydrostatic pressures could be obtained by solving this equation. The results showed that the squared fundamental natural frequency of submerged FG cylindrical shell was linearly related to hydrostatic pressure. Based on this conclusion, the predicted values of critical buckling pressure could be obtained accurately by using three data values of natural frequencies. In addition, the data of natural frequency for FG cylindrical shell under any hydrostatic pressure could be easily got by using this linear fitting method. The calculation results indicated that the predicted results were consistent with the reference results. The validity and usefulness of the proposed method in engineering application were proved.

参考文献/References:

[1] BRISCHETTO S, TORNABENE F, FANTUZZI N, et al. 3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders[J]. Meccanica, 2016, 51(9): 2059-2098.

[2] LI X, DU C C, LI Y H. Parametric instability of a functionally graded cylindrical thin shell subjected to both axial disturbance and thermal environment[J]. Thin-walled structures, 2018, 123: 25-35.
[3] LOY C T, LAM K Y, REDDY J N. Vibration of functionally graded cylindrical shells[J]. International journal of mechanical sciences, 1999, 41(3): 309-324.
[4] 王鹏, 李天匀, 朱翔, 等. 近水面状态有限长圆柱壳振动特性分析[J]. 振动工程学报, 2016, 29(5): 772-778.
[5] ZHANG X M. Frequency analysis of submerged cylindrical shells with the wave propagation approach [J]. International journal of mechanical sciences, 2002, 44(7): 1259-1273.
[6] ABRAMOVICH H, SINGER J, WELLER T. Repeated buckling and its influence on the geometrical imperfections of stiffened cylindrical shells under combined loading[J]. International journal of non-linear mechanics, 2002, 37(4/5): 577-588.
[7] 陈忱, 李天匀, 朱翔, 等. 基于波传播法的水下圆柱壳临界载荷-频率特性分析[J]. 中 国 造 船, 2012,53(1):130-136.
[8] PLAUT R H, VIRGIN L N. Use of frequency data to predict buckling [J]. Journal of engineering mechanics, 1990, 116 (10): 2330-2335.
[9] ZHU X, YE W B, LI T Y, et al. The elastic critical pressure prediction of submerged cylindrical shell using wave propagation method[J]. Ocean engineering, 2013, 58: 22-26.
[10] 梁斌, 陈金晓, 李戎, 等. 水下环肋功能梯度材料圆柱壳稳定性研究[J]. 振动与冲击, 2017, 36(13): 80-85, 121.
[11] 孟豪, 韩志军, 路国运. 复合材料圆柱壳非轴对称动力屈曲[J]. 振动与冲击, 2017, 36(11): 27-30, 78.
[12] 仝博, 朱锡, 任春雨, 等. 复合材料夹芯圆柱壳自由振动研究[J]. 海军工程大学学报, 2017, 29(5): 97-102.
[13] FLÜGGE W. Stresses in shells[M]. Berlin: Springer-verlag, 1960.
[14] MORSE P M, INGARD K U. Theoretical acoustics[M]. New York: McGraw-Hill Book Company, 1968.
[15] ZHANG X M, LIU G R, LAM K Y. Coupled vibration analysis of fluid-filled cylindrical shells using the wave propagation approach[J]. Applied acoustics, 2001, 62(3):229-243.
[16] KIM Y W. Temperature dependent vibration analysis of functionally graded rectangular plates[J]. Journal of sound and vibration, 2005, 284(3/4/5): 531-549.
[17] KWAK M K, KOO J R, BAE C H. Free vibration analysis of a hung clamped-free cylindrical shell partially submerged in fluid[J]. Journal of fluids and structures, 2011, 27(2): 283-296.[18] 刘佩, 刘书文, 黎胜. 潜深对水下圆柱壳振动声辐射特性的影响[J]. 舰船科学技术, 2014, 36(5): 36-41, 48.

更新日期/Last Update: 2021-03-15