[1]程博,蔡龙帅,郭桂芳,等.基于改进 JPS 和 DWA 算法的移动机器人路径规划[J].郑州大学学报(工学版),2026,47(XX):1-10.[doi:10.13705/j.issn.1671-6833.2025.03.018]
 CHENG Bo,CAI Longshuai,GUO Guifang,et al.Path Planning for Mobile Robots Based on Improved JPS and DWA Algorithms[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-10.[doi:10.13705/j.issn.1671-6833.2025.03.018]
点击复制

基于改进 JPS 和 DWA 算法的移动机器人路径规划()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-10
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Path Planning for Mobile Robots Based on Improved JPS and DWA Algorithms
作者:
程博1 蔡龙帅1 郭桂芳2 张烜1
1. 长安大学 工程机械学院,陕西 西安 710064;2. 西藏民族大学 信息工程学院,陕西 咸阳 712082
Author(s):
CHENG Bo1 CAI Longshuai1 GUO Guifang2 ZHANG Xuan1
1. School of Construction Machinery, Chang’ an University, Xi’an 710064, China;2. School of Information Engineering, Xizang Minzu University, Xianyang 712082, China
关键词:
跳点搜索算法 路径规划 优先级避障 动态权重评价函数 冲突路径
Keywords:
jump point search algorithm path planning priority obstacle avoidance dynamic weight evaluation function conflict path
分类号:
TP242
DOI:
10.13705/j.issn.1671-6833.2025.03.018
文献标志码:
A
摘要:
针对传统跳点搜索(JPS)算法在路径规划过程中,因访问大量无关扩展节点而致使搜索盲目性增强、内存占用增大,以及输出路径存在冗余节点等问题,提出了一种基于目标点搜索方向优先级和动态权重评价函数的改进JPS算法。首先,依据目标点与移动机器人的位置关系,提升算法寻路时目标点所在方向的优先级,并引入基于距离的动态权重评价函数,以此减少搜索无关节点造成的资源浪费和效率损耗。其次,对改进后的JPS算法输出的全局路径实施二次规划,消除原路径中存在的冗余节点,使全局路径更为平滑。再次,引入并改进动态窗口法(DWA)算法作为局部路径规划算法,改进后的DWA算法采用基于碰撞距离的动态优先级策略,自动避让交叉路径上的移动机器人。最后,分别对改进后的JPS算法和DWA算法进行仿真验证。结果表明:相较于传统跳点算法,所提算法搜索到的扩展节点数平均减少了60.0%,轨迹节点数平均减少了43.6%,路径拐点数平均减少了23.9%。此外,改进后的DWA算法能够有效解决传统DWA算法在处理路径冲突等动态环境问题时存在的缺陷与不足,显著提高了DWA算法在多机器人路径规划中的协同性和适应性。
Abstract:
To tackle the problems of heightened search blindness, elevated memory usage, and redundant nodes in the output path resulting from the access of a large number of irrelevant extension nodes in traditional JPS algorithms, an improved JPS algorithm is proposed. This algorithm is based on the priority of the target-point search direction and a dynamic-weight evaluation function. Firstly, according to the positions of the target point and the mobile robot, the priority of the direction where the target point lies during the algorithm’s path-finding process is enhanced. A distance-based dynamic-weight evaluation function is introduced to mitigate the resource waste and efficiency loss caused by searching for irrelevant nodes. Meanwhile, the global path output by the improved JPS algorithm undergoes secondary planning. Redundant nodes in the original path are eliminated, making the global path smoother. Secondly, the DWA algorithm is introduced and improved as a local path-planning algorithm. The improved DWA algorithm adopts a dynamic priority strategy based on collision distance to automatically avoid mobile robots on cross-paths. Finally, the improved JPS algorithm and DWA algorithm are separately simulated and verified. The results indicate that, compared with traditional jump-point algorithms, the improved algorithm in this paper reduces the average number of searched extended nodes by 60.0%, the average number of trajectory nodes by 43.6%, and the average number of path turning points by 23.9%. The improved DWA algorithm can effectively address the drawbacks and limitations of traditional DWA algorithms in dynamic environmental problems such as path conflicts, and improve the collaboration and adaptability of DWA algorithms in multi-robot path planning.

参考文献/References:

[1] 卢凌霄, 董乾鹏, 张天乐, 等. 机器人运动学与运动规划算法综述[J]. 印刷与数字媒体技术研究, 2023(5): 1-16.
LU L X, DONG Q P, ZHANG T L, et al. A review of robot kinematics and motion planning algorithms [J]. Printing and Digital Media Technology Study, 2023(5): 1-16.
[2] 白晓兰, 袁铮, 周全文, 等. 移动机器人路径规划算法研究综述[J]. 机械工程师, 2024(8): 24-28, 33.
BAI X L, YUAN Z, ZHOU W Q, et al. Survey of path planning algorithms for mobile robots [J]. Mechanical Engineer, 2024(8): 24-28, 33.
[3] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths [J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[4] WANG H, LI G Q, HOU J, et al. A path planning method for underground intelligent vehicles based on an improved RRT* algorithm [J]. Electronics, 2022, 11.
[5] 高岳林, 武少华. 基于自适应粒子群算法的机器人路径规划[J]. 郑州大学学报(工学版), 2020, 41(4): 46-51.
GAO Y L, WU S H. Robot path planning based on adaptive particle swarm optimization [J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 46-51.
[6] HAO K, ZHAO J L, LI Z S, et al. Dynamic path planning of a three-dimensional underwater AUV based on an adaptive genetic algorithm [J]. Ocean Engineering, 2022, 263: 112421.
[7] HARABOR D, GRASTIEN A, HARABOR D, et al. Online graph pruning for pathfinding on grid maps [C]//Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. New York: ACM, 2011: 1114-1119.
[8] 丁承君, 阎欣怡, 冯玉伯, 等. 基于 APF 的 AGV 局部路径规划改进算法研究 [J]. 计算机工程与应用, 2022, 58(22): 305-312.
DING C J, YAN X Y, FENG Y B, et al. Improved algorithm of AGV local path planning based on APF [J]. Computer Engineering and Applications, 2022, 58(22): 305-312.
[9] FOX D, BURGARD W, THRUN S. The dynamic window approach to collision avoidance [J]. IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33.
[10] MAGYAR B, TSIOKKAS N, DERAY J, et al. Timed-elastic bands for manipulation motion planning [J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3513-3520.
[11] SHEN D, CHEN Y B, LI L X, et al. Trajectory tracking for autonomous vehicles using robust model predictive control [J]. IFAC-PapersOnLine, 2024, 58(10): 94-101.
[12] ZHENG X, TU X W, YANG Q H. Improved JPS algorithm using new jump point for path planning of mobile robot [C]//2019 IEEE International Conference on Mechatronics and Automation (ICMA). Piscataway: IEEE, 2019: 2463-2468.
[13] MA L, GAO X, FU Y X, et al. An improved jump point search algorithm for home service robot path planning [C]//2019 Chinese Control and Decision Conference (CCDC). Piscataway: IEEE, 2019: 2477-2482.
[14] 黄健萌, 吴宇雄, 林谢昭. 移动机器人平滑 JPS 路径规划与轨迹优化方法 [J]. 农业机械学报, 2021, 52(2): 21-29, 121.
HUANG J M, WU Y X, LIN X Z. Smooth JPS path planning and trajectory optimization method of mobile robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 21-29, 121.
[15] 秦齐, 万熠, 侯嘉瑞, 等. 基于双向动态跳点搜索算法的 AGV 路径规划研究 [J]. 单片机与嵌入式系统应用, 2021, 21(8): 55-58, 63.
QIN Q, WAN Y, HOU J R, et al. AGV path planning based on bidirectional dynamic jumping search algorithm [J]. Microcontrollers & Embedded Systems, 2021, 21(8): 55-58, 63.
[16] SU Q H, MA S B, WANG L Y, et al. Artificial potential field guided JPS algorithm for fast optimal path planning in cluttered environments [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(12): 602.
[17] CHEN T, CHEN S F, ZHANG K R, et al. A jump point search improved ant colony hybrid optimization algorithm for path planning of mobile robot [J]. International Journal of Advanced Robotic Systems, 2022, 19(5): 172988062211279.
[18] 张庆, 刘旭, 彭力, 等. 融合 JPS 和改进 A* 算法的移动机器人路径规划 [J]. 计算机科学与探索, 2021, 15(11): 2233-2240.
ZHANG Q, LIU X, PENG L, et al. Path planning for mobile robots based on JPS and improved A* algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2233-2240.
[19] KOBAYASHI M, MOTOI N. Path planning method considering blind spots based on ROS navigation stack and dynamic window approach for wheeled mobile robot [C]//2022 International Power Electronics Conference. Piscataway: IEEE, 2022: 274-279.
[20] 刘宙浩, 万超一, 尹明锋, 等. 改进 A* 算法与 DWA 融合的移动机器人的路径规划算法研究 [J]. 制造业自动化, 2023, 45(12): 55-60.
LIU Z H, WAN C Y, YIN M F, et al. Research on path planning algorithm of mobile robot based on improved A* algorithm and dynamic window approach [J]. Manufacturing Automation, 2023, 45(12): 55-60.
[21] BERTI H, SAPPA D A, AGAMENNONI O E. Improved dynamic window approach by using Lyapunov stability criteria [J]. Latin American Applied Research, 2008, 38(4): 289-298.
[22] 王超, 梅瑛, 张溢, 等. 基于改进 DWA 算法的移动机器人避障研究 [J]. 机械设计与研究, 2024, 40(1): 92-96.
WANG C, MEI Y, ZHANG Y, et al. Research on obstacle avoidance of mobile robot based on improved DWA algorithm [J]. Machine Design & Research, 2024, 40(1): 92-96.
[23] 蔡佳成, 白克强, 李旭春, 等. 基于 JPS 改进的移动机器人路径规划算法 [J]. 计算机应用研究, 2022, 39(7): 1985-1991.
CAI J C, BAI K Q, LI X C, et al. Improved path planning algorithm for mobile robot based on JPS [J]. Application Research of Computers, 2022, 39(7): 1985-1991.
[24] 石英托, 陈华, 张连新, 等. 基于改进 A* 算法的 AGV 转运机器人路径规划研究 [J]. 制造技术与机床, 2022(5): 19-22.
SHI Y T, CHEN H, ZHANG L X, et al. Research on path planning of AGV transport robot based on improved A* algorithm [J]. Manufacturing Technology & Machine Tool, 2022(5): 19-22.

相似文献/References:

[1]刘广瑞,刘军,孔令云..移动机器人路径规划蚁群算法及其收敛性分析[J].郑州大学学报(工学版),2012,33(02):24.[doi:10.3969/j.issn.1671-6833.2012.02.006]
 LIU Guangrui,LIU Jun,KONG Lingyun.Ant Colony Algorithm of Path Planning for Robot and Its Convergence Analysis[J].Journal of Zhengzhou University (Engineering Science),2012,33(XX):24.[doi:10.3969/j.issn.1671-6833.2012.02.006]
[2]赵开新,王东署..未知环境中自主机器人的路径规划研究[J].郑州大学学报(工学版),2013,34(05):74.[doi:10.3969/j.issn.1671-6833.2013.05.016]
 ZHAO Kai-xin,WANG Dong-shu.Research of Autonomous Mobile Robot Path Planning in Unknown Complex Environment[J].Journal of Zhengzhou University (Engineering Science),2013,34(XX):74.[doi:10.3969/j.issn.1671-6833.2013.05.016]
[3]姜晓东,任奕辰,朱晓东.基于改进人工鱼群算法的蠕虫机器人路径规划[J].郑州大学学报(工学版),2024,45(03):55.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 007]
 JIANG Xiaodong,REN Yichen,ZHU Xiaodong.New Grid Map Path Planning Based on Improved Artificial Fish Swarm Algorithm[J].Journal of Zhengzhou University (Engineering Science),2024,45(XX):55.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 007]
[4]秦东晨,张文灿,王婷婷,等.受限泊车通道下自动驾驶平行泊车的路径规划方法[J].郑州大学学报(工学版),2024,45(05):1.[doi:10.13705/j.issn.1671-6833.2024.05.006]
 QIN Dongchen,ZHANG Wencan,WANG Tingting,et al.A Path Planning Method for Parallel Parking in Constrained Parking Channels[J].Journal of Zhengzhou University (Engineering Science),2024,45(XX):1.[doi:10.13705/j.issn.1671-6833.2024.05.006]
[5]张博强,张成龙,冯天培,等.基于JPS和变半径RS曲线的Hybrid A∗路径规划算法[J].郑州大学学报(工学版),2025,46(02):19.[doi:10.13705/j.issn.1671-6833.2025.02.022]
 ZHANG Boqiang,ZHANG Chenglong,FENG Tianpei,et al.The Hybrid A∗ Planning Algorithm Based on JPS and Variable Radius RS Curves[J].Journal of Zhengzhou University (Engineering Science),2025,46(XX):19.[doi:10.13705/j.issn.1671-6833.2025.02.022]
[6]杨火根,王 艳,骆 伟.改进粒子群算法的无人机 B 样条曲线路径规划[J].郑州大学学报(工学版),2025,46(04):8.[doi:10.13705/j.issn.1671-6833.2025.04.014]
 YANG Huogen,WANG Yan,et al.Improved Particle Swarm Algorithm for B-spline Curve Path Planning of Unmanned Aerial Vehicles[J].Journal of Zhengzhou University (Engineering Science),2025,46(XX):8.[doi:10.13705/j.issn.1671-6833.2025.04.014]

备注/Memo

备注/Memo:
收稿日期:2025-02-20;修订日期:2025-03-26
基金项目:中央引导地方科技发展资金项目( XZ202301YD0003C) ;国家自然科学基金资助项目( 12102065) ;西藏民族大学重大项目培育(17MDZP07)
作者简介:程博(1976— ),男,陕西大荔人,长安大学副教授,博士,主要从事智能变频控制系统研究,E-mail:2280273795@qq.com。
更新日期/Last Update: 2026-01-14