LUO R H, YUAN H, ZHONG F H, et al. Traffic jam detection based on convolutional neural network[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(2): 18-22.
[2]GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. (2015-03-20)[2024-05-10]. http:∥arxiv. org/ abs/1412.6572.
[3]SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. (2014-0219)[2024-05-10]. http:∥arxiv.org/abs/1312.6199.
[4]赵俊杰, 王金伟. 基于SmsGAN的对抗样本修复[J]. 郑州大学学报(工学版), 2021, 42(1): 50-55.
ZHAO J J, WANG J W. Recovery of adversarial examples based on SmsGAN[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(1): 50-55.
[5]YUAN X Y, HE P, ZHU Q L, et al. Adversarial examples: attacks and defenses for deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2805-2824.
[6]KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial examples in the physical world[EB/OL]. (2017-02-11) [2024-05-10]. https:∥arxiv.org/abs/1607.02533.
[7]MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/ OL]. (2019-09-04)[2024-05-10]. https:∥arxiv. org/abs/1706.06083.
[8]DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9185-9193.
[9]XIE C H, ZHANG Z S, ZHOU Y Y, et al. Improving transferability of adversarial examples with input diversity [C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 2725-2734.
[10]WANG X S, HE K. Enhancing the transferability of adversarial attacks through variance tuning[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 1924-1933.
[11] CAO Y J, WANG H B, ZHU C X, et al. Improving the transferability of adversarial examples with diverse gradients[C]∥2023 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2023: 1-9.
[12]何英哲, 胡兴波, 何锦雯, 等. 机器学习系统的隐私和安全问题综述[J]. 计算机研究与发展, 2019, 56 (10): 2049-2070.
HE Y Z, HU X B, HE J W, et al. Privacy and security issues in machine learning systems: a survey[J]. Journal of Computer Research and Development, 2019, 56(10): 2049-2070.
[13] LIN J D, SONG C B, HE K, et al. Nesterov accelerated gradient and scale invariance for adversarial attacks[EB/ OL]. (2020-02-03)[2024-05-10]. https:∥arxiv. org/abs/1908.06281.
[14]WANG X S, LIN J D, HU H, et al. Boosting adversarial transferability through enhanced momentum[EB/OL]. (2021-03-19)[2024-05-10]. https:∥arxiv. org/ abs/2103.10609.
[15] DONG Y P, PANG T Y, SU H, et al. Evading defenses to transferable adversarial examples by translation-invariant attacks[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 4307-4316.
[16] GAO L L, ZHANG Q L, SONG J K, et al. Patch-wise attack for fooling deep neural network[C]∥European Conference on Computer Vision. Cham: Springer, 2020: 307-322.
[17]马克平.试论生物多样性的概念[J].生物多样性, 1993(1):20-22.
MA K P. Oiscussion on the concept of biodiversity[J]. Chinese Biodiversity,1993(1):20-22.
[18] MENDEL G, LIBRARY B, PUNNETT R C. Versuche über Pflanzen-Hybriden[M]. Brünn: Im Verlage des Vereines, 1866.
[19] LIU Y P, CHEN X Y, LIU C, et al. Delving into transferable adversarial examples and black-box attacks[EB/ OL]. (2017-06-07)[2024-05-10]. http:∥arxiv.org/ abs/1611.02770.
[20] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[21]WU D X, WANG Y S, XIA S T, et al. Skip connections matter: on the transferability of adversarial examples generated with ResNets[EB/OL]. (2020-02-14)[202405-10]. http:∥arxiv.org/abs/2002.05990.
[22] HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]∥European Conference on Computer Vision. Cham: Springer, 2016: 630-645.
[23] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770-778.
[24] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 2261-2269.
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[26] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2024-05-10]. http:∥arxiv. org/ abs/1409.1556.
[27] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 2818-2826.
[28] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[EB/OL].(2016-08-23)[2024-0510]. https:∥arxiv.org/abs/1602.07261.
[29] TRAMÈR F, KURAKIN A, PAPERNOT N, et al. Ensemble adversarial training: attacks and defenses[EB/ OL].(2020-04-26)[2024-05-10]. http:∥arxiv.org/ abs/1705.07204.