[1]徐 平,杜炫錡,何 况,等.地铁出入线反射型声屏障降噪效果影响因素分析[J].郑州大学学报(工学版),2025,46(03):67-74.[doi:10.13705/j.issn.1671-6833.2025.03.003]
 XU Ping,DU Xuanqi,HE Kuang,et al.Analysis of Influencing Factors of Noise Reduction Effectiveness of Reflective Sound Barrier in Metro Access Line[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):67-74.[doi:10.13705/j.issn.1671-6833.2025.03.003]
点击复制

地铁出入线反射型声屏障降噪效果影响因素分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年03期
页码:
67-74
栏目:
出版日期:
2025-05-13

文章信息/Info

Title:
Analysis of Influencing Factors of Noise Reduction Effectiveness of Reflective Sound Barrier in Metro Access Line
文章编号:
1671-6833(2025)03-0067-08
作者:
徐 平1 杜炫錡1 何 况2 杨延峰3
1.郑州大学 水利与交通学院,河南 郑州 450001;2.郑州地铁集团有限公司,河南 郑州 475004;3.中国铁道科学研究院集团有限公司,北京 100081
Author(s):
XU Ping1 DU Xuanqi1 HE Kuang2 YANG Yanfeng3
1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 2.Zhengzhou Metro Co., Ltd., Zhengzhou 475004, China; 3.China Academy of Railway Sciences Co., Ltd., Beijing 100081, China
关键词:
地铁出入线 声屏障 插入损失 降噪效果 影响因素
Keywords:
metro access line sound barrier insertion loss noise reduction effectiveness influence factors
分类号:
TB533+.2U231
DOI:
10.13705/j.issn.1671-6833.2025.03.003
文献标志码:
A
摘要:
为了改善地铁出入线沿线居民的生活环境,以郑州某线地铁出入线为工程实例,基于快速多极边界元方法,采用Virtual Lab声学仿真软件构建声屏障模型,将低速地铁列车行驶的轮轨噪声简化为双点声源,引入声压级插入损失来表征声屏障的降噪效果,分析了声源声压级、声屏障高度、声屏障与声源距离、声屏障顶端结构和受声点位置等因素对声屏障降噪效果的影响。根据仿真模拟结果,在地铁出入线靠近居民建筑一侧设置了高4 m、与双声源中心距离3 m的直立Y型反射声屏障,现场实测了声屏障设置后的噪声信号,获得了噪声特征参数,仿真结果与测试结果具有较好的吻合性,验证了仿真计算的合理性。地铁出入线沿线建筑与轨道中心的最近距离为30 m,实测的设置声屏障后沿线居民建筑的噪声满足相关规范要求,Y型反射声屏障具有较好的降噪效果。相关成果可为地铁出入线的声屏障设计和降噪效果评价提供参考。
Abstract:
In order to improve resident living environment along the metro access line, one section of Zhengzhou metro access line was taken as the example, the fast multi-pole boundary element method was considered, the sound barrier model was constructed with Virtual Lab acoustic simulation software, the wheel rail noise of low-speed subway train was simplified as a two-point sound source, the insertion loss of sound pressure level was adopted to characterize the noise reduction effectiveness of the sound barrier, and the influence of some factors on noise reduction effectiveness were analyzed such as the sound source sound pressure level, sound barrier height, distance between sound barriers and sound sources, the top structure of the sound barrier and the location in the sound shadow area. According to the simulation results, the vertical Y-shaped reflective sound barrier with 4 m height and 3 m distance from the center of dual sound sources was set up on the metro access line, the noise signals were in-situ measured, the noise characteristic parameters were obtained, and the simulation results had good agreement with the test results, the simulation calculation was verified to be reasonable. The closest distance between buildings along the metro access line and the center of the track is 30 meters, the noise of residential buildings with sound barrier along the line meet with relevant regulatory requirements, Y-shaped sound barrier had better noise reduction performance, and the relevant achievements could provide parameters for the noise reduction design and performance evaluation of metro access line.

参考文献/References:

[1]毛东兴, 洪宗辉. 环境噪声控制工程[M]. 2版. 北京: 高等教育出版社, 2010. 

MAO D X, HONG Z H. Environmental noise control engineering[M]. 2nd ed. Beijing: Higher Education Press, 2010. 
[2]张朋, 郝影, 张磊, 等. 地铁振动引起的二次辐射噪声适用标准研究[J]. 中国环境监测, 2020, 36(4): 154-159. 
ZHANG P, HAO Y, ZHANG L, et al. Study on the applicable standard of secondary radiation noise caused by metro train vibration[J]. Environmental Monitoring in China, 2020, 36(4): 154-159. 
[3]赵兴征, 张秦, 高科梁, 等. 某地铁U型梁结构辐射噪声分析预测及其降噪研究[J]. 声学技术, 2024, 43 (3): 394-402. 
ZHAO X Z, ZHANG Q, GAO K L, et al. Analysis and prediction of radiated noise of a subway U-beam structure and its noise reduction study[J]. Technical Acoustics, 2024, 43(3): 394-402. 
[4]刘全民, 徐培培, 宋立忠, 等. 轨道交通噪声评价与控制标准探讨[J]. 噪声与振动控制, 2021, 41(6): 229-236, 243. 
LIU Q M, XU P P, SONG L Z, et al. Investigation of noise assessment and control standards for rail transit[J]. Noise and Vibration Control, 2021, 41(6): 229236, 243. 
[5]张书豪, 刘剑梅, 吴姣姣, 等. 重庆地铁各型声屏障综合降噪效果研究[J]. 噪声与振动控制, 2024, 44 (4): 252-257. 
ZHANG S H, LIU J M, WU J J, et al. Study on comprehensive noise reduction effect of various types of noise barriers in Chongqing metro[J]. Noise and Vibration Control, 2024, 44(4): 252-257. 
[6]HU S H, ZHAO Q, JIANG B L, et al. Vibration simulation and analysis of high-speed railways sound barriers under different conditions of bolts loosening[J]. Journal of Physics: Conference Series, 2024, 2819(1): 012060. 
[7]王朝亮, 张良涛, 宋立忠, 等. 市域铁路近轨声屏障降噪效果预测分析[J]. 噪声与振动控制, 2022, 42 (6): 187-191, 278. 
WANG C L, ZHANG L T, SONG L Z, et al. Predication and analysis of noise reduction of near-rail sound barriers on suburban railways[J]. Noise and Vibration Control, 2022, 42(6): 187-191, 278. 
[8]毛伟, 何渝, 谢辉等. 高架轨道交通线路声屏障振动辐射噪声特性[J]. 重庆大学学报, 2022, 45(增刊1): 60-65. 
MAO W, HE Y, XIE H, et al. Characteristics of radiated noise from sound barrier vibration of elevated rail transitlines[J]. Journal of Chongqing University, 2022, 45 (S1): 60-65. 
[9]丁亚超. 温州市域铁路近轨声屏障设计试验研究[J]. 铁道工程学报, 2022, 39(8): 98-104. 
DING Y C. Experimental study on design of near rail noise barrier for Wenzhou surburban railway[J]. Journal of Railway Engineering Society, 2022, 39(8): 98-104. 
[10]臧传臻, 魏庆朝. 有源声屏障对地铁轮轨噪声的消减性能[J]. 哈尔滨工业大学学报, 2022, 54(3): 114-121. 
ZANG C Z, WEI Q C. Noise reduction performance of active noise barrier for metro wheel-rail noise[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 114-121. 
[11]吴小萍, 朱烨, 鲜凌霄, 等. 高速铁路Y型声屏障动态特性数值研究[J]. 中南大学学报(自然科学版), 2022, 53(2): 737-746. 
WU X P, ZHU Y, XIAN L X, et al. Numerical study on dynamic characteristics of Y-typed sound barrier in highspeed railway[J]. Journal of Central South University (Science and Technology), 2022, 53(2): 737-746. 
[12]宋立忠, 高亏, 冯青松, 等. 轨道交通桥梁低矮弧形声屏障降噪性能研究[J]. 振动与冲击, 2023, 42 (24): 143-151, 168. 
SONG L Z, GAO K, FENG Q S, et al. A study on noise reduction performance of low-height curved noise barriers on rail transit bridges[J]. Journal of Vibration and Shock, 2023, 42(24): 143-151, 168. 
[13] SONG X D, LI Q. Numerical and experimental study on noise reduction of concrete LRT bridges[J]. The Science of the Total Environment, 2018, 643: 208-224. 
[14] ZHANG X, LIU R, CAO Z Y, et al. Acoustic performance of a semi-closed noise barrier installed on a highspeed railway bridge: measurement and analysis considering actual service conditions[J]. Measurement, 2019, 138: 386-399. 
[15] HE W, HE K W, ZOU C, et al. Experimental noise and vibration characteristics of elevated urban rail transit considering the effect of track structures and noise barriers [J]. Environmental Science and Pollution Research, 2021, 28(33): 45903-45919. 
[16]盛峰, 姜在秀, 贺银芝, 等. 高速铁路声屏障宽频穿孔吸声降噪结构[J]. 同济大学学报(自然科学版), 2024, 52(9): 1469-1473. 
SHENG F, JIANG Z X, HE Y Z, et al. Multi-layer micro-perforated panels with broadband absorption for reduction of high-speed railway noise[J]. Journal of Tongji University (Natural Science), 2024, 52(9): 1469-1473. 
[17]侯博文, 曾钦娥, 费琳琳, 等. 城市轨道交通地下车站站台噪声评价方法[J]. 清华大学学报(自然科学版), 2021, 61(1): 57-63. 
HOU B W, ZENG Q E, FEI L L, et al. Noise evaluation method for urban rail transit underground station platforms [J]. Journal of Tsinghua University (Science and Technology), 2021, 61(1): 57-63. 
[18]尹小春, 卢耀辉, 赵宏星, 等. 隧道工况下高速列车动态气密性数值分析方法[J]. 郑州大学学报(工学版), 2022, 43(5): 52-58. 
YIN X C, LU Y H, ZHAO H X, et al. Numerical analysis method for dynamic air tightness value of high-speed train[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(5): 52-58. 
[19] ZHANG X Y, THOMPSON D, QUARANTA E, et al. An engineering model for the prediction of the sound radiation from a railway track[J]. Journal of Sound and Vibration, 2019, 461: 114921. 
[20]生态环境部. 环境影响评价技术导则 城市轨道交通: HJ 453—2018[S]. 北京: 中国环境科学出版社, 2018. 
Ministry of Ecology and Environment of the People′s Republic of China. Technical guidelines for environmental impact assessment-urban rail transit: HJ 453—2018[S]. Beijing: China Environmental Science Press, 2018. 
[21]詹福良, 徐俊伟. Virtual.Lab Acoustics声学仿真计算从入门到精通[M]. 西安: 西北工业大学出版社, 2013. 
ZHAN F L, XU J W. Virtual.Lab Acoustics acoustics acoustics simulation calculation from introduction to mastery[M]. Xi’an: Northwestern Polytechnical University Press, 2013. 
[22]国家质量监督检验检疫总局, 中国家标准化管理委员会. 城市轨道交通列车噪声限值和测量方法: GB 14892—2006[S]. 北京: 中国标准出版社, 2006.
General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Noise limit and measurement for train of urban rail transit: GB 14892—2006[S]. Beijing: Standards Press of China, 2006.
[23]环境保护部. 声环境质量标准: GB 3096—2008[S]. 北京: 中国环境科学出版社, 2008. 
Ministry of Environmental Protection of the People′s Republic of China. Environmental quality standards for noise: GB 3096—2008[S]. Beijing: China Environmental Science Press, 2008.

更新日期/Last Update: 2025-05-22