[1]陈江义,殷笑勇,王婷婷,等.基于改进斥力模型的人工势场局部路径规划[J].郑州大学学报(工学版),2023,44(03):85-89.[doi:10.13705/j.issn.1671-6833.2022.06.015]
 CHEN Jiangyi,YIN Xiaoyong,WANG Tingting,et al.Local Path Planning of Artificial Potential Field Based on Improved Repulsive Model[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):85-89.[doi:10.13705/j.issn.1671-6833.2022.06.015]
点击复制

基于改进斥力模型的人工势场局部路径规划()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年03期
页码:
85-89
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Local Path Planning of Artificial Potential Field Based on Improved Repulsive Model
作者:
陈江义殷笑勇王婷婷秦东晨
郑州大学 机械与动力工程学院,河南 郑州 450001

Author(s):
CHEN JiangyiYIN XiaoyongWANG TingtingQIN Dongchen
School of Mechanical and Power Engineering, Zhengzhou University, 450001, Zhengzhou, Henan

关键词:
改进斥力模型 局部路径规划 斥力偏转 局部最优点 安全距离
Keywords:
improved repulsion model local path planning repulsive force deflection local optimum safe distanc
分类号:
U471. 15
DOI:
10.13705/j.issn.1671-6833.2022.06.015
文献标志码:
A
摘要:
针对传统人工势场算法易陷入局部最优点问题,提出一种改进斥力模型的人工势场方法,以提高自动驾 驶汽车的安全性和稳定性。根据汽车速度方向和障碍物位置的相对关系以及障碍物与道路边界之间的距离,确定 斥力偏转方向和偏转角度,避免汽车陷入局部最优; 重新设计斥力场函数,把汽车避障安全距离引入到斥力作用范 围中,在斥力函数中引入对数函数以及纵向相对距离调节因子,减小规划路径的曲率以及总转角。仿真计算结果 表明: 在应用改进斥力模型的人工势场方法进行局部路径规划时,斥力偏转角的选取对路径的稳定性和安全性有 直接影响,合适的斥力偏转角能避免路径规划时出现局部最优。在多障碍物环境下车辆需要连续避障时,改进斥 力模型所规划的路径总转角以及曲率峰值显著下降,能有效提高行驶安全性指标。
Abstract:
Aim to the traditional artificial potential field algorithm was easy to fall into the local optimum, this study proposed an artificial potential field method which could improve the repulsive force model. According to the relative relationship between vehicle velocity direction and obstacle position and the distance between obstacle and road boundary, the repulsive deflection direction and deflection angle were determined to avoid vehicle falling into local optimum. The repulsive field function was redesigned to introduce the safety distance of vehicle obstacle avoidance into the scope of repulsive force. Logarithmic function and longitudinal relative distance adjustment factor were introduced into the repulsive force function to reduce the curvature and total rotation angle of the planned path. The simulation results showed that the selection of repulsive deflection angle had a direct influence on the stability and safety of the local path when the artificial potential field method of the improved repulsive model is used for local path planning, and the appropriate repulsive deflection angle could avoid the occurrence of local optimum in path planning. When the vehicle need continuous obstacle avoidance in multi-obstacle environment, the total path angle and curvature peak planned by the improved repulsive force model decreasd significantly, which could effectively improve the driving safety index.

参考文献/References:

[1] 宁世发, 冯忠祥. 道路交通事故成因分析[J]. 交通标准化, 2006, 34(10): 152-155.NING S F, FENG Z X. Analysis on the cause of road traffic accidents[J]. Communications Standardization, 2006, 34(10): 152-155.

[2] 彭晓燕, 谢浩, 黄晶. 无人驾驶汽车局部路径规划算法研究[J]. 汽车工程, 2020, 42(1): 1-10.PENG X Y, XIE H, HUANG J. Research on local path planning algorithm for unmanned vehicles[J]. Automotive Engineering, 2020, 42(1): 1-10.
[3] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.
[4] LI G H, YAMASHITA A, ASAMA H, et al. An efficient improved artificial potential field based regression search method for robot path planning[C]∥2012 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE, 2012: 1227-1232.
[5] 于振中, 闫继宏, 赵杰, 等. 改进人工势场法的移动机器人路径规划[J]. 哈尔滨工业大学学报, 2011, 43(1): 50-55.YU Z Z, YAN J H, ZHAO J, et al. Mobile robot path planning based on improved artificial potential field me-thod[J]. Journal of Harbin Institute of Technology, 2011, 43(1): 50-55.
[6] HUANG Y Q, HU H, LIU X Q. Obstacles avoidance of artificial potential field method with memory function in complex environment[C]∥2010 8th World Congress on Intelligent Control and Automation. Piscataway: IEEE, 2010: 6414-6418.
[7] 徐飞. 基于改进人工势场法的机器人避障及路径规划研究[J]. 计算机科学, 2016, 43(12): 293-296.XU F. Research on robot obstacle avoidance and path planning based on improved artificial potential field method[J]. Computer Science, 2016, 43(12): 293-296.
[8] FEDELE G, D′ALFONSO L, CHIARAVALLOTI F, et al. Obstacles avoidance based on switching potential functions[J]. Journal of Intelligent &Robotic Systems, 2018, 90(3/4): 387-405.
[9] 范玉龙, 黄波, 周仟, 等. 基于改进人工势场法的小车避障路径规划研究[J]. 软件导刊, 2021, 20(7): 38-42.FAN Y L, HUANG B, ZHOU Q, et al. Research on vehicle obstacle avoidance path planning based on improved artificial potential field method[J]. Software Guide, 2021, 20(7): 38-42.
[10] 张三川, 明珠. 基于主动安全的改进人工势场局部路径规划研究[J]. 郑州大学学报(工学版), 2021, 42(5): 32-36, 55.ZHANG S C, MING Z. Research on improved local path planning of artificial potential field based on active safety[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(5): 32-36, 55.
[11] 王树凤, 张钧鑫, 刘宗锋. 基于改进人工势场法的智能车辆超车路径规划研究[J]. 汽车技术, 2018(3): 5-9.WANG S F, ZHANG J X, LIU Z F. A research on overtaking lane planning for intelligent vehicles based on improved artificial potential field method[J]. Automobile Technology, 2018(3): 5-9.
[12] 谭宝成, 崔佳超. 改进人工势场法在无人车避障中的应用[J]. 西安工业大学学报, 2014, 34(12): 1007-1011, 1017.TAN B C, CUI J C. Application of improved artificial potential field method in intelligent collision avoidance system on structured road[J]. Journal of Xi′an Technological University, 2014, 34(12): 1007-1011, 1017.
[13] 胡丹丹, 张琪. 基于PER-APF算法的无人驾驶汽车换道轨迹规划[J]. 计算机测量与控制, 2022, 30(6): 229-234, 241.HU D D, ZHANG Q. Lane changing trajectory planning of driverless vehicle based on PER-APFAlgorithm[J]. Computer Measurement &Control, 2022, 30(6): 229-234, 241.
[14] 来飞, 黄超群, 董红亮. 智能汽车自动紧急避撞系统的安全距离模型及其对比分析[J]. 重庆理工大学学报(自然科学), 2020, 34(9): 39-46.LAI F, HUANG C Q, DONG H L. Safety distance model and comparative analysis for intelligent vehicle emergency collision avoidance system[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(9): 39-46.
[15] 冀杰, 姬鹏, 彭和, 等. 面向车辆主动避撞的三维虚拟危险势能场设计[J]. 汽车工程, 2016, 38(9): 1065-1071, 1079.JI J, JI P, PENG H, et al. Design of 3D virtual dange-rous potential field for vehicle active collision avoidance[J]. Automotive Engineering, 2016, 38(9): 1065-1071, 1079.

更新日期/Last Update: 2023-05-09