[1] 曹永辉, 刘伟. 汽车制动鼓加工工艺优化方案[J]. 机电元件, 2019, 39(3): 57-60.CAO Y H, LIU W. Process optimization scheme of automotive brake drum[J]. Electromechanical Components, 2019, 39(3): 57-60.[2] 李洪. GB/T 34422—2017《汽车用制动盘》国家标准解读[J]. 铸造, 2020, 69(3): 306-310.LI H. Interpretation of GB/T 34422—2017 “brake disc for automobile”[J].Foundry, 2020,69(3):306-310.
[3] 徐青朋, 白希盛. 道路交通事故车辆制动失效原因探讨[J]. 中国司法鉴定, 2020(4): 99-102.XU Q P, BAI X S. Discussion on the causes of vehicle braking failure in road traffic accidents[J]. Chinese Journal of Forensic Sciences, 2020(4): 99-102.
[4] 张三川, 郭向利, 田金坤. 汽车鼓式制动器的多工况热-力耦合仿真分析[J]. 郑州大学学报(工学版), 2018, 39(4): 92-96.ZHANG S C, GUO X L, TIAN J K. Thermo-mechanical coupling analysis of automotive drum brake under multiple braking conditions[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(4): 92-96.
[5] 于大惠. 灰铸铁卡车制动鼓耦合仿生模型设计及参数优化[D]. 长春: 吉林大学, 2021.YU D H. Coupling bionic model design and parameter optimization of grey cast iron truck drum brake[D]. Changchun: Jilin University, 2021.
[6] 雷宇, 张忠明, 王嘉河, 等. 汽车制动鼓的成型工艺与失效分析研究现状及进展[J]. 铸造技术, 2021, 42(4): 320-323.LEI Y, ZHANG Z M, WANG J H, et al. Research status and progress of forming technology and failure analysis of automobile brake drum[J]. Foundry Technology, 2021, 42(4): 320-323.
[7] CASATI R, FACCIN R, VEDANI M. Microstructural evolution and thermal fatigue resistance of grey cast iron[J]. Fatigue &Fracture of Engineering Materials &Structures, 2018, 41(1): 99-110.
[8] 谢源, 卢森加, 张红艳. 一种新型高强度双金属制动鼓的研制[J]. 铸造技术, 2021, 42(4): 292-295.XIE Y, LU S J, ZHANG H Y. Development of a new type of high strength bimetal brake drum[J]. Foundry Technology, 2021, 42(4): 292-295.
[9] MOONESAN M, HONARBAKHSH RAOUF A, MADAH F, et al. Effect of alloying elements on thermal shock resistance of gray cast iron[J]. Journal of Alloys and Compounds, 2012, 520: 226-231.
[10] WANG B X, PAN Y M, LIU Y, et al. Wear behavior of composite strengthened gray cast iron by austempering and laser hardening treatment[J]. Journal of Materials Research and Technology, 2020, 9(2): 2037-2043.
[11] TONG X, ZHOU H, REN L Q, et al. Thermal fatigue characteristics of gray cast iron with non-smooth surface treated by laser alloying of Cr powder[J]. Surface and Coatings Technology, 2008, 202(12): 2527-2534.
[12] YU D H, ZHOU T, ZHOU H, et al. Effects of pearlite on thermal fatigue and wear resistance of gray cast iron treated by laser[J]. Journal of Materials Engineering and Performance, 2022, 31(5): 3962-3974.
[13] GAO K, QIN X P, CHEN X L, et al. Effect of curved surface shape and feed velocity on microstructure and mechanical performance of gray cast iron after spot continual induction hardening[J]. Journal of Materials Engineering and Performance, 2017, 26(5): 1993-2002.
[14] 谢同轮, 赵宇光, 李梦楠. 重载汽车蠕墨铸铁制动鼓的失效分析[J]. 现代铸铁, 2017, 37(2): 53-57.XIE T L, ZHAO Y G, LI M N. Failure analysis of heavy duty truck vermicular graphite iron brake drum[J]. Modern Cast Iron, 2017, 37(2): 53-57.
[15] TONG X, ZHOU H, ZHANG W, et al. Thermal fatigue behavior of gray cast iron with striated biomimetic non-smooth surface[J]. Journal of Materials Processing Technology, 2008, 206(1/2/3): 473-480.