[1]汪涵迪,张东生,李江涛,等.增密工艺对C/C-Cu复合材料组织和性能的影响[J].郑州大学学报(工学版),2023,44(03):110-115.[doi:10.13705/j.issn.1671-6833.2022.06.013]
 WANG Handi,ZHANG Dongsheng,LI Jiangtao,et al.Influence of Densification Process on Microstructure and Properties of C/C-Cu Composites[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):110-115.[doi:10.13705/j.issn.1671-6833.2022.06.013]
点击复制

增密工艺对C/C-Cu复合材料组织和性能的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44
期数:
2023年03期
页码:
110-115
栏目:
出版日期:
2023-04-30

文章信息/Info

Title:
Influence of Densification Process on Microstructure and Properties of C/C-Cu Composites
作者:
汪涵迪1 张东生2 李江涛2 赵红亮1 吴振卿1 范宇恒1
1.郑州大学 材料科学与工程学院,河南 郑州 450001; 2.巩义市泛锐熠辉复合材料有限公司,河南 巩义 451200

Author(s):
WANG Handi1ZHANG Dongsheng2LI Jiangtao2ZHAO Hongliang1WU Zhenqing1FAN Yuheng1
1.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, 2.Gongyi City Pan -Rui Yihui Composite Materials Co., Ltd., Henan Gongyi 451200

关键词:
C/C-Cu 复合材料 增密工艺 化学气相渗透 先驱体浸渍裂解转化 C/C 增强体 抗拉强度
Keywords:
C /C-Cu composite densification process chemical vapor infiltration precursor impregnation pyrolysis C /C reinforcement tensile strength
分类号:
TG161
DOI:
10.13705/j.issn.1671-6833.2022.06.013
文献标志码:
A
摘要:
为了探究增密工艺对 C/C-Cu 复合材料组织和性能的影响,分别采用化学气相渗透( CVI) 和先驱体浸渍 裂解转化( PIP) 对 2. 5D 针刺碳毡进行增密处理,得到由热解碳和树脂碳填充的 C/C 增强体,采用真空浸渗工艺 制备了 C/C-Cu 复合材料,并对其进行了组织分析和性能测试。结果表明: 采用 CVI 增密制备的 C/C-Cu 复合材 料中 TiC 界面层更薄,热解碳对碳纤维起到了较好的保护作用,垂直、平行方向的电阻率分别为 0. 72、0. 63 μΩ·m、 压缩强度分别为 367. 61、326. 87 MPa,抗拉强度为 62. 54 MPa,其导电性能、压缩强度、抗拉强度以及塑性均优于 PIP 增密,破坏机制为纤维拔出破坏; 采用 CVI 增密制备的 C/C-Cu 复合材料硬度值为 77. 28 HBW,略低于 PIP 增 密( 81. 59 HBW) ,但二者差异较小。综上,CVI 增密工艺更适合用来制备 C/C-Cu 复合材料的 C/C 增强体。
Abstract:
In order to explore the effect of densification process on the microstructure and properties of C/C-Cu composite, the 2.5D needle-punched carbon felt was densified by chemical vapor infiltration (CVI) and precursor impregnation pyrolysis (PIP) to obtain C/C reinforcements filled with pyrolytic carbon and resin carbon, respectively. C/C-Cu composite was prepared by vacuum infiltration process, and the microstructure analysis and performance test were carried out. The results showed that the TiC interface layer in the C/C-Cu composite prepared by CVI process was thinner, and the pyrolytic carbon had a better protection effect on the carbon fiber. The resistivity and compressive strength in the vertical (parallel) direction were 0.72(0.63)μΩ·m, 367.61(326.87)MPa, respectively.And the tensile strength is 62.54 MPa. Its electrical conductivity, compressive strength, tensile strength, and plasticity were better than those of PIP process. The failure mechanism was fiber pull-out failure. The hardness value of C/C-Cu composite prepared by CVI process was 77.28 HBW, which was slightly lower than that of PIP process (81.59 HBW), but the difference between them was small. In conclusion, the CVI densification process was more suitable for the preparation of C/C reinforcements of C/C-Cu composites.

参考文献/References:

[1] KUMAR K, MONDAL S. Fabrication and characterisation of carbon nanotube reinforced copper matrix nanocomposites[J]. Canadian Metallurgical Quarterly, 2022, 61(1): 77-84.

[2] GERTHSEN D, BACH D, DE PAUW V, et al. Structural properties of the fiber-matrix interface in carbon-fiber/carbon-matrix composites and interfaces between carbon layers and planar substrates[J]. International Journal of Materials Research, 2022, 97(7): 1052-1058.
[3] SILVAIN J F, HEINTZ J M, VEILLERE A, et al. A review of processing of Cu/C base plate composites for interfacial control and improved properties[J]. International Journal of Extreme Manufacturing, 2020, 2(1): 012002.
[4] YIN J, ZHANG H, BAI K L, et al. Effect of carbon matrix on mechanical and tribological properties of Cf/Cu/C composites[J]. Materials Characterization, 2020, 168: 110551.
[5] WANG P, WANG L, KANG K J, et al. Microstructural, mechanical and tribological performances of carbon fiber reinforced copper/carbon composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106247.
[6] 刘建秀,贾旭钢,樊江磊,等.碳纤维增强铜基复合材料(Cf/Cu)中碳纤维表面改性与结合界面性能的研究现状[J].材料科学与工程学报,2021,39(5):847-854.LIU J, JIA X G, FAN J L, et al. Research status of surface modification and interface properties of carbon fiber reinforced copper matrix composites interfacial properties[J]. Journal of Materials Science and Engineering, 2021, 39(5): 847-854.
[7] ZUO T T, LI J, GAO Z S, et al. Enhanced electrical conductivity and hardness of Copper/Carbon Nanotubes composite by tuning the interface structure[J]. Materials Letters, 2020, 280: 128564.
[8] OKU T, OKU T. Effects of zirconium addition on microstructures and thermal conductivities of carbon/copper composites[J]. Materials Science and Technology, 2021, 37(13): 1090-1095.
[9] 王亚丽,杨琳,孙龙,等.碳纤维织物增强铜基复合材料的显微结构及其热物理性能[J].材料科学与工程学报,2020,38(1):153-157.WANG Y L, YANG L, SUN L, et al. Microstructure and thermal physical properties of carbon fiber fabric reinforced copper matrix composite[J]. Journal of Materials Science and Engineering,2020,38(1):153-157.
[10] 朱强, 张东生, 范宇恒, 等. 基体碳种类对C/Cu复合材料界面浸润行为的影响[J]. 郑州大学学报(工学版), 2021, 42(5): 100-105.ZHU Q, ZHANG D S, FAN Y H, et al. Effect of matrix carbon species on interface wetting behavior of C/Cu composites[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(5): 100-105.
[11] WEN X C, GUO L, BAO Q P, et al. Fabrication of TiC from the Cu-Ti-C system under the super-gravity field[J]. Journal of Alloys and Compounds, 2020, 832: 154995.
[12] 胡锐, 李海涛, 薛祥义, 等. Ti对C/Cu复合材料界面润湿及浸渗组织的影响[J]. 中国有色金属学报, 2008, 18(5): 840-844.HU R, LI H T, XUE X Y, et al. Effect of Ti on interface wettability and microstructure of C/Cu composites prepared by infiltration[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(5): 840-844.
[13] LIU X, DENG H L, ZHENG J H, et al. Mechanical and thermal conduction properties of carbon/carbon composites with different carbon matrix microstructures[J]. New Carbon Materials, 2020, 35(5): 576-584.
[14] LIU N K, GUO L J, KOU G, et al. Epitaxial grown carbon nanotubes reinforced pyrocarbon matrix in C/C composites with improved mechanical properties[J]. Mate-rials, 2021, 14(21): 6607.
[15] 庞菲, 唐萍萍, 张力. C/C坯体对C/SiC复合材料组织结构和导热性能的影响[J]. 高科技纤维与应用, 2018, 43(4): 38-43.PANG F, TANG P P, ZHANG L. Effect of C/C preforms on microstructure and thermal conductivity of C/SiC composites[J]. Hi-tech Fiber and Application, 2018, 43(4): 38-43.
[16] 彭雪锋, 戴宗妙, 蒋建军, 等. C/C复合材料不同碳基体的纳米压痕行为研究[J]. 装备环境工程, 2019, 16(10): 64-70.PENG X F, DAI Z M, JIANG J J, et al. Nanoindentation behavior of C/C composites with the different carbon matrices[J]. Equipment Environmental Engineering, 2019, 16(10): 64-70.
[17] 曾光登, 刘建军, 邹武. 基体炭种类对C/C复合材料电导率的影响分析[J]. 碳素技术, 2012, 31(4): 19-22.ZENG G D, LIU J J, ZOU W. Effect of different matrix on C/C composites conductivity[J]. Carbon Techniques, 2012, 31(4): 19-22.

更新日期/Last Update: 2023-05-09