[1]刘 昉,张鲁丰,庞博慧,等.基于CEEMDAN和MPE的导墙振动信号降噪方法及应用[J].郑州大学学报(工学版),2022,43(05):91-97.[doi:10.13705/j.issn.1671-6833.2022.05.002]
 LIU Fang,ZHANG Lufeng,PANG Bohui,et al.Denoising Method of Discharge Guide Wall Vibration Signal Based on CEEMDAN and MPE and Its Application[J].Journal of Zhengzhou University (Engineering Science),2022,43(05):91-97.[doi:10.13705/j.issn.1671-6833.2022.05.002]
点击复制

基于CEEMDAN和MPE的导墙振动信号降噪方法及应用()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年05期
页码:
91-97
栏目:
出版日期:
2022-08-22

文章信息/Info

Title:
Denoising Method of Discharge Guide Wall Vibration Signal Based on CEEMDAN and MPE and Its Application
作者:
刘 昉1 张鲁丰1 庞博慧2 梁 超 1 姚 烨1
1.天津大学水利工程仿真与安全国家重点实验室;2.华能澜沧江水电股份有限公司;

Author(s):
LIU Fang1 ZHANG Lufeng1 PANG Bohui2 LIANG Chao1 YAO Ye1
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University, Tianjin 300354, China; 
2.Huaneng Lancang River Hydropower Inc., Kunming 650214,China
关键词:
Keywords:
discharge guide wall vibration signal CEEMDAN multi-scale permutation entropy wavelet threshold analysis signal denoising
分类号:
TV65
DOI:
10.13705/j.issn.1671-6833.2022.05.002
文献标志码:
A
摘要:
针对泄流导墙实测振动位移信号中存在随机噪声的问题,将多尺度排列熵引入到泄流导墙振动信号的降噪处理中,使用一种应用于泄流结构的基于自适应噪声的完备总体经验模态分解 ( CEEM-DAN)和多尺度排列熵( MPE)联合去噪的方法。 首先,通过 CEEMDAN 方法对导墙振动信号进行处理,得到一系列固有模态函数( IMF) ;其次,通过多尺度排列熵分析各 IMF 的随机性,并以多尺度排列熵值作为评价指标,将各 IMF 分量筛选为含噪声的 IMF 分量和纯净的 IMF 分量;最后,利用小波阈值降噪方法对含噪声的 IMF 分量进行降噪处理,将降噪处理后的数据与剩余纯净的 IMF 分量重构,获得降噪后的泄流导墙振动信号。 仿真信号和工程实例结果表明:使用该方法提高了信号的降噪效果,能精确去除泄流导墙振动信号中的噪声,且有效保留了振动信号中的特征信息,具有一定的可行性。 该方法的降噪结果可以作为实现对泄流导墙安全监测的可靠依据,可以应用到与之类似的导墙振动信号降噪处理中,为实现泄流导墙结构的健康运行打下基础。
Abstract:
In order to solve the problem of random noise in the measuring vibration displacement signals of the discharge guide wall, multi-scale permutation entropy was introduced to reduce the noise of the vibration signal of the discharge guide wall. A signal denoising method based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) and multi-scale permutation entropy(MPE) was applied to discharge structures. The vibration signal of the guide wall was decomposed by CEEMDAN to obtain a series of intrinsic mode functions (IMFs),and then the multi-scale permutation entropy (MPE) was introduced to analyze the randomness of each IMF,and MPE value was used as the evaluation index to screen them into noise-dominant IMF and real IMF. The wavelet threshold denoising method was used to denoise the noise-dominant IMF. The processed data was reconstructed with the remaining real IMFs to obtain the pure guide wall vibration signal. The results of simulation signals and engineering examples showed that this method could improve the noise reduction effect of the signal,accurately remove the noise in the vibration signal of the discharge guide wall,and retain the characteristic information of the vibration signal effectively,it had certain feasibility . The noise reduction results of this method could be used as a reliable basis for the safety monitoring of the discharge guide wall, and could be applied to the noise reduction of similar vibration signals of the guide wall.

参考文献/References:

[1] 练继建, 张建伟, 王海军. 基于泄流响应的导墙损 伤诊断 研 究 [ J] . 水 力 发 电 学 报, 2008, 27 ( 1) : 96-101.

 LIAN J J, ZHANG J W, WANG H J. Study on damage diagnosis of guide wall based on flood discharge response [ J ] . Journal of hydroelectric engineering, 2008, 27(1) : 96-101. 
[2] 李火坤, 练继建, 刘永智. 三峡左导墙泄洪振动原 型观测及其动态识别与安全评估[ J] . 水利水运工 程学报, 2010(3) : 59-64.
 LI H K, LIAN J J, LIU Y Z. Prototype observation of flood discharge-induced vibration and its dynamic identification and safety evaluation of Three Gorges left guide wall[ J] . Hydro-science and engineering, 2010 (3) : 59-64.
[3] 徐国宾, 谷宇杰, 刘昉. 小波分析在高坝泄流水垫 塘信号分析中的应用 [ J] . 水 力 发 电 学 报, 2013, 32(3) : 114-119. 
XU G B, GU Y J, LIU F. Application of wavelet analysis to vibration signal processing for high dam plunge pool[ J] . Journal of hydroelectric engineering, 2013, 32(3) : 114-119.
[4] 李成业, 练继建, 刘昉, 等. EMD 与小波阈值联合 滤波方法的改进及其在泄流结构振动分析中的应 用[ J] . 振动与冲击, 2013, 32(19) : 63-70, 110.
 LI C Y, LIAN J J, LIU F, et al. An improved filtering method based on EMD and wavelet-threshold and its application in vibration analysis for a flood discharge structure[ J] . Journal of vibration and shock, 2013, 32(19) : 63-70, 110. 
[5] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J] . Proceedings of the royal society of London series A: mathematical, physical and engineering sciences, 1998, 454(1971) : 903-995.
[6] 戴婷, 张榆锋, 章克信, 等. 经验模态分解及其模 态混叠消除的研究进展[ J] . 电子技术应用, 2019, 45(3) : 7-12. DAI T, ZHANG Y F, ZHANG K X, et al. The research progress of empirical mode decomposition and mode mixing elimination[ J] . Application of electronic technique, 2019, 45(3) : 7-12. 
[7] 胡剑超, 练继建, 马斌, 等. 基于 CEEMD 和小波 包阈值 的 组 合 降 噪 及 泄 流 结 构 的 模 态 识 别 方 法 [ J] . 振动与冲击, 2017, 36(17) : 1-9. 
HU J C, LIAN J J, MA B, et al. A de-noising and modal identification combined method based on CEEMD and wavelet packet threshold for flood discharge structures[ J] . Journal of vibration and shock, 2017, 36(17) : 1-9.
[8] YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[ J] . Advances in adaptive data analysis, 2010, 2(2) : 135-156. 
[9] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C] / / 2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2011: 4144-4147.
[10] BAI L L, HAN Z N, LI Y F, et al. A hybrid de-noising algorithm for the gear transmission system based on CEEMDAN-PE-TFPF [ J ] . Entropy, 2018, 20 (5) : 361. 
[11] 姚文坡, 刘铁兵, 戴加飞, 等. 脑电信号的多尺度排 列熵分析[J]. 物理学报, 2014, 63(7): 427-433. 
YAO W P, LIU T B, DAI J F, et al. Multiscale permutation entropy analysis of electroencephalogram[ J] . Acta physica sinica, 2014, 63(7) : 427-433.
[12] 郑近德, 程军圣, 杨宇. 多尺度排列熵及其在滚动 轴承故障诊断中的应用[ J] . 中国机械工程, 2013, 24(19) : 2641-2646. 
ZHENG J D, CHENG J S, YANG Y. Multi-scale permutation entropy and its applications to rolling bearing fault diagnosis [ J ] . China mechanical engineering, 2013, 24(19) : 2641-2646. 
[13] 郑近德, 程军圣, 杨宇. 改进的 EEMD 算法及其应 用研究[J]. 振动与冲击, 2013, 32(21): 21-26, 46. 
ZHENG J D, CHENG J S, YANG Y. Modified EEMD algorithm and its applications[ J] . Journal of vibration and shock, 2013, 32(21) : 21-26, 46.
[14] 张臣国. 小波分析在信号降噪中的应用研究[ D] . 成都: 电子科技大学, 2012. 
ZHANG C G. Research on the application of wavelet analysis in signal denoising[D] . Chengdu: University of Electronic Science and Technology of China, 2012. 
[15] 崔公哲, 张朝霞, 杨玲珍, 等. 一种改进的小波阈 值去噪算法 [ J] . 现 代 电 子 技 术, 2019, 42 ( 19) : 50-53, 58. 
CUI G Z, ZHANG Z X, YANG L Z, et al. An improved wavelet threshold denoising algorithm [ J ] . Modern electronics technique, 2019, 42 ( 19 ) : 50 - 53, 58. 
[16] 熊春宝, 于丽娜, 常翔宇. 基于 EEMD-小波阈值去噪的桥梁结构模态参数识别[ J]. 天津大学学报(自 然科学与工程技术版), 2020, 53(4): 378-385. 
XIONG C B, YU L N, CHANG X Y. Modal parameter identification of bridge structures based on EEMDwavelet threshold denoising[ J] . Journal of Tianjin university ( science and technology ) , 2020, 53 ( 4 ) : 378-385. 
[17] 饶国强, 冯辅周, 司爱威, 等. 排列熵算法参数的 优化确 定 方 法 研 究 [ J ] . 振 动 与 冲 击, 2014, 33 (1) : 188-193. 
RAO G Q, FENG F Z, SI A W, et al. Method for optimal determination of parameters in permutation entropy algorithm [ J ] . Journal of vibration and shock, 2014, 33(1) : 188-193. 
[18] 闫祥海, 周志立, 李忠利. 拖拉机动力输出轴载荷 经验模态分解软阈值降噪研究[ J] . 西安交通大学 学报, 2019, 53(5) : 67-72, 122. 
YAN X H, ZHOU Z L, LI Z L. Study on the noise reduction of tractor power take-off load by empirical mode decomposition soft-threshold method[ J]. Journal of Xi′ an Jiaotong university, 2019, 53 ( 5 )

更新日期/Last Update: 2022-08-23