[1] 刘今越, 李顺达, 陈梦倩, 等. 面向移乘搬运护理 机器人的人体姿态视觉识 别 [ J] . 机 器 人, 2019, 41(5) : 601-608.
LIU J Y, LI S D, CHEN M Q, et al. Visual recognition of human pose for the transfer-care assistant robot [ J] . Robot, 2019, 41(5) : 601-608.
[2] 潘沛克, 王艳, 罗勇, 等. 基于 U-net 模型的全自 动鼻咽肿瘤 MR 图像分割[ J] . 计算机应用, 2019, 39(4) : 1183-1188.
PAN P K, WANG Y, LUO Y, et al. Automatic segmentation of nasopharyngeal neoplasm in MR image based on U-net model[ J] . Journal of computer applications, 2019, 39(4) : 1183-1188.
[3] 彭金柱, 董梦超, 杨扬. 基于视觉和肌电信息融合 的手势识 别 方 法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2021, 42(2) : 67-73.
PENG J Z, DONG M C, YANG Y. Human gesture recognition method based on vision and EMG signal information[ J] . Journal of Zhengzhou university ( engineering science) , 2021, 42(2) : 67-73.
[4] BEZDEK J C. A convergence theorem for the fuzzy ISODATA clustering algorithms[ J] . IEEE transactions on pattern analysis and machine intelligence, 1980, 2 (1) : 1-8.
[5] BENSAID A M, HALL L O, BEZDEK J C, et al. Partially supervised clustering for image segmentation [ J] . Pattern recognition, 1996, 29(5) : 859-871.
[6] CAI W L, CHEN S C, ZHANG D Q. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[ J] . Pattern recognition, 2007, 40(3) : 825-838.
[7] ZHAO F, JIAO L C, LIU H Q, et al. A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation[ J] . Signal processing, 2011, 91(4) : 988-999.
[8] GONG M G, LIANG Y, SHI J, et al. Fuzzy c-means clustering with local information and kernel metric for image segmentation [ J] . IEEE transactions on image processing, 2013, 22(2) : 573-584.
[9] MEMON K H, LEE D H. Generalised kernel weighted fuzzy C-means clustering algorithm with local information [ J ] . Fuzzy sets and systems, 2018, 340: 91 -108.
[10] LEI T, JIA X H, ZHANG Y N, et al. Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering [ J ] . IEEE transactions on fuzzy systems, 2018, 26(5) : 3027-3041.
[11] ZHANG Y X, BAI X Z, FAN R R, et al. Deviationsparse fuzzy c-means with neighbor information constraint[ J] . IEEE transactions on fuzzy systems, 2019, 27(1) : 185-199.
[12] NOORDAM J C, Van Den BROEK W H A M, BUY-DENS L M C. Multivariate image segmentation with cluster size insensitive fuzzy c-means[ J] . Chemometrics and intelligent laboratory systems, 2002, 64( 1) : 65-78.
[13] LIN P L, HUANG P W, KUO C H, et al. A sizeinsensitive integrity-based fuzzy c-means method for data clustering [ J ] . Pattern recognition, 2014, 47 (5) : 2042-2056.
[14] LIANG J Y, BAI L, DANG C Y, et al. The K-meanstype algorithms versus imbalanced data distributions [ J] . IEEE transactions on fuzzy systems, 2012, 20 (4) : 728-745.
[15] HAN H, WANG W Y, MAO B H. BorderlineSMOTE: a new over-sampling method in imbalanced data sets learning[ J] . Lecture notes in computer science, 2005, 3644:878-887.
[16] SU C T, CHEN L S, YIH Y. Knowledge acquisition through information granulation for imbalanced data [ J] . Expert systems with applications, 2006, 31(3) : 531-541.