[1]杜志叶,赵鹏飞,伍 川,等.基于光纤光栅传感器的输电杆塔角钢应变精准在线监测研究[J].郑州大学学报(工学版),2022,43(06):49-56.[doi:10.13705/j.issn.1671-6833.2022.06.011]
 DU Z Y,ZHAO P F,WU C,et al.Research on Precise Online Monitoring of Angle Steel Strain of Transmission Tower ba<x>sed on FBG Sensor[J].Journal of Zhengzhou University (Engineering Science),2022,43(06):49-56.[doi:10.13705/j.issn.1671-6833.2022.06.011]
点击复制

基于光纤光栅传感器的输电杆塔角钢应变精准在线监测研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43卷
期数:
2022年06期
页码:
49-56
栏目:
出版日期:
2022-09-02

文章信息/Info

Title:
Research on Precise Online Monitoring of Angle Steel Strain of Transmission Tower ba<x>sed on FBG Sensor
作者:
杜志叶1 赵鹏飞1 伍 川2 龙振华3 孟圣淳1 郝兆扬1
1. 武汉大学 电气与自动化学院,湖北 武汉 430072;2. 国网河南省电力公司电力科学研究院 河南 郑州 450015;3. 兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070

Author(s):
DU Z Y1 ZHAO P F1 WU C2 et al
1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China; 2. State Grid Henan Electric Power Research Institute, Zhengzhou 450015, China; 3. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
关键词:
Keywords:
分类号:
TM754
DOI:
10.13705/j.issn.1671-6833.2022.06.011
文献标志码:
A
摘要:
准确监测并掌握输电线路杆塔的结构健康状态,对保障输电线路安全稳定运行具有重要意义,针对目前输电杆塔结构应力应变监测方法中存在较大测量误差的问题,从提高输电杆塔角钢应变的测量精度出发,基于光纤光栅传感器提出了一种考虑传感器在角钢表面安装位置及安装方式的输电杆塔角钢应变精准在线监测方法,首先对输电杆塔角钢表面不同位置的应变分布特性进行了有限元仿真分析,然后根据输电杆塔结构中L角钢的形状特点,设计了一种可拆卸手环式的“L”型贴合角钢表面的传感器固定夹具,对比分析了传感器不同安装方式对角钢应变测量精度的影响,最后利用该方法设计了基于光纤光栅传感器的输电杆塔角钢应变精准在线监测系统,对某220kV输电线路杆塔薄弱位置角钢进行了应变数据实测分析,结果表明:实测数据和有限元仿真数据应变测量误差小于15με,相对误差小于6.28%,有效提高了输电杆塔角钢应变的测量精度,研究结果为输电杆塔结构健康状态精准在线监测提供了参考依据,具有较高的工程实用价值。仿真分析;其次,根据输电杆塔结构中 L 角钢的形状特点,设计了一种可拆卸手环式的 L 型传感器固定夹具,对比分析了传感器不同安装方式对角钢应变测量精度的影响;最后,利用该方法设计了输电杆塔角钢应变在线监测系统。 对某 220 kV 输电线路杆塔薄弱位置角钢进行应变数据实测分析,结果表明:实测数据和有限元仿真数据应变测量误差小于1. 5× 10- 5 ,相对误差小于 6. 28%。 研究结果为输电杆塔结构健康状态精准在线监测提供了参考依据,具有较高的工程实用价值。
Abstract:
Aiming at the problem of large measurement errors in the current stress-strain monitoring methods of transmission tower, this study was carried out to improve the accuracy of strain measurement of transmission pole and tower angle steel. Based on fiber bragg grating FBG) sensor, an accurate online monitoring method for angle steel strain of transmission towers was proposed considering the position and mode of sensor installa- tion on the surface of angle steel. Firstly, the transmission tower angle steel surface strain distribution charac- teristics of different positions were analized based on the finite element simulation, and then according to the transmission tower structure in L shape characteristics of angle steel, a removable hand ring type L-type joint angle sensor was designed on the surface of the fixed clamp. The comparison and analysis of different sensor installation methods and their influence on the angle steel strain measurement accuracy were examined. Final- ly, this method was used to design an accurate online monitoring system of transmission pole tower angle steel strain based on fiber bragg grating sensor. The strain data of angle steel in weak position of pole tower of a 220 kV transmission line was measured and analyzed. The results show that the strain measurement error of the measured data and the finite element simulation data was less than 1.5 × 10~3; and the relative error was less than 6.28%, which could effectively improve the measurement accuracy of the Angle steel strain of transmission tow- er. The finding of this study showed extra light on the accurate online monitoring of transmission tower structure.

参考文献/References:

[1] 江秀臣, 许永鹏, 李曜丞, 等. 新型电力系统背景 下的输变电数字化转型 [ J] . 高 电 压 技 术, 2022, 48(1) : 1-10. 

JIANG X C, XU Y P, LI Y C, et al. Digitalization transformation of power transmission and transformation under the background of new power system[ J] . High voltage engineering, 2022, 48(1) : 1-10. 
[2] 彭向阳, 钱金菊, 吴功平, 等. 架空输电线路机器 人全自主巡检系统及示范应用[ J] . 高电压技术, 2017, 43(8) : 2582-2591. 
PENG X Y, QIAN J J, WU G P, et al. Full automatic inspection system and its demonstration application based on robot for overhead transmission lines [ J ] . High voltage engineering, 2017, 43(8) : 2582-2591.
 [3] 马民, 秦佳, 杨东升, 等. 人工智能在电力系统中 的应用综述[ J] . 郑州大学学报( 工学版) , 2019,40(5) : 23-31. MA M, QIN J, YANG D S, et al. Review on the application of artificial intelligence in power systems[ J] . Journal of Zhengzhou university ( engineering science) , 2019, 40(5) : 23-31. 
[4] 高明, 赵振刚, 李英娜, 等. 基于光纤传感的输电 线路杆塔 倾 斜 监 测 研 究 [ J] . 电 子 测 量 与 仪 器 学 报, 2018, 32(12) : 51-59. 
GAO M, ZHAO Z G, LI Y N, et al. Monitoring and research on tilt of transmission line tower based on optical fiber sensing[ J] . Journal of electronic measurement and instrumentation, 2018, 32(12) : 51-59.
 [5] 范贝贝. 基于智能视频的输电线路杆塔状态在线监 测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2018. 
FAN B B. Research on online monitoring method of transmission tower state based on intelligent video [D] . Harbin: Harbin University of Science and Technology, 2018.
 [6] 刘艳, 胡毅, 王力农, 等. 高分辨率 SAR 卫星监测 特高压输电铁塔形变[ J] . 高电压技术, 2009, 35 (9) : 2076-2080. 
LIU Y, HU Y, WANG L N, et al. Surveillance for 1000 kV transmission tower deformation using highresolution SAR satellite[ J] . High voltage engineering, 2009, 35(9) : 2076-2080.
[7] 王敏学, 李黎, 周达明, 等. 分布式光纤传感技术 在输电线路在线监测中的应用研究综述[ J] . 电网 技术, 2021, 45(9) : 3591-3600. 
WANG M X, LI L, ZHOU D M, et al. Overview of studies on application of distributed optical fiber sensing technology in online monitoring of transmission lines[ J] . Power system technology, 2021, 45 ( 9) : 3591-3600.
 [8] 刘福营. 输电铁塔应力测试实验研究[ D] . 南宁: 广西大学, 2015. LIU F Y. Experimental study on stress testing of transmission tower[D]. Nanning: Guangxi University, 2015. 
[9] 黄新波, 廖明进, 徐冠华, 等. 采用光纤光栅传感 器的输电线路铁塔应力监测方法[ J] . 电力自动化 设备, 2016, 36(4) : 68-72. 
HUANG X B, LIAO M J, XU G H, et al. Stress monitoring method applying FBG sensor for transmission line towers[ J] . Electric power automation equipment, 2016, 36(4) : 68-72. 
[10] 初金良, 陈扬哲, 高磊, 等. 基于应变监测数据的 输电杆塔疲劳寿命预测[ J] . 浙江电力, 2021, 40 (6) : 77-82. 
CHU J L, CHEN Y Z, GAO L, et al. Fatigue life prediction of transmission towers based on strain monitoring data[ J] . Zhejiang electric power, 2021, 40(6) : 77-82.
 [11] 王燕, 皇甫成, 杜志叶, 等. 覆冰情况下输电线路 有限元计算及其结构优化[ J] . 电力系统保护与控 制, 2016, 44(8) : 99-106.
 WANG Y, HUANGPU C, DU Z Y, et al. Finite element calculation and structural optimization method for the high voltage transmission line under icing condition [ J] . Power system protection and control, 2016, 44 (8) : 99-106. 
[12] 杜志叶, 张宇, 阮江军, 等. 500 kV 架空输电线路 覆冰失效有限元仿真分析[ J] . 高电压技术, 2012, 38(9) : 2430-2436. 
DU Z Y, ZHANG Y, RUAN J J, et al. Failure analysis of 500 kV iced overhead transmission line by finite element method[ J] . High voltage engineering, 2012, 38(9) : 2430-2436.
 [13] MA D F, CAI H S, ZHANG L B. Stress monitoring research in dancing condition of transmission tower based on FBG sensors [ J ] . Applied mechanics and materials, 2013, 448-453: 2249-2253. 
[14] 李姗姗, 王力农, 方雅琪, 等. 基于布拉格光纤光 栅传感技术的复合材料杆塔老化寿命预测[ J] . 电 工技术学报, 2018, 33(1) : 217-224.
 LI S S, WANG L N, FANG Y Q, et al. Aging prediction of composite tower based on FBG sensing technology[ J] . Transactions of China electrotechnical society, 2018, 33(1) : 217-224.
 [15] 李成榕, 马国明. 光纤布喇格光栅传感器应用于电 气设备监测的研究进展[ J] . 中国电机工程学报, 2013, 33(12) : 114-122, 193. 
LI C R, MA G M. Research and development of fiber Bragg grating monitoring in electrical engineering[ J] . Proceedings of the csee, 2013, 33(12): 114-122, 193.
 [16] 易仁慧, 周祖德, 刘明尧, 等. 表面粘贴式光纤光 栅传感器的动应变传递规律[ J] . 中国机械工程, 2016, 27(24) : 3368-3375. 
YI R H, ZHOU Z D, LIU M Y, et al. Dynamic strain transfer laws of surface bonded FBGSs[ J] . China mechanical engineering, 2016, 27(24) : 3368-3375.

更新日期/Last Update: 2022-10-03