[1]高岳林,武少华.基于自适应粒子群算法的机器人路径规划[J].郑州大学学报(工学版),2020,41(04):46-51.[doi:10.13705/j.issn.1671-6833.2020.01.004]
 GAO Yuelin,WU Shaohua.Robot Path Planning Based on Adaptive Particle Swarm Optimization[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):46-51.[doi:10.13705/j.issn.1671-6833.2020.01.004]
点击复制

基于自适应粒子群算法的机器人路径规划()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年04期
页码:
46-51
栏目:
出版日期:
2020-08-12

文章信息/Info

Title:
Robot Path Planning Based on Adaptive Particle Swarm Optimization
作者:
高岳林武少华
1. 北方民族大学宁夏智能信息与大数据处理重点实验室2. 宁夏大学数学统计学院
Author(s):
GAO Yuelin1WU Shaohua2
1.Ningxia Key Laboratory of Intelligent Information and Big Data Processing,North Minzu University,Yinchuan 750021,China;2.School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,China
关键词:
粒子群算法模拟退火算法机器人路径规划三次样条插值
Keywords:
particle swarm algorithm' target="_blank" rel="external">">particle swarm algorithmsimulated annealing algorithmRobot path planningcubic spline interpolation
DOI:
10.13705/j.issn.1671-6833.2020.01.004
文献标志码:
A
摘要:
针对粒子群算法在解决机器人路径规划中存在易陷入局部最优,路径搜索后期收敛速度慢以及路径不平滑的问题,提出一种基于模拟退火的改进自适应的粒子群算法,该算法结合了模拟退火算法的粒子群算法的优点,路径搜索前期路径搜索速度快,路径搜索过程中路径具有概率突跳对的能力,能够有效地避免陷入局部最优路径,而且利用3次样条插值使路径平滑,路径搜索后期路径收敛精度也很高。仿真结果表明,该算法在不同障碍物模型中均能够快速找到最短的平滑路径,而且效果优于传统方法。
Abstract:
Particle swarm optimization algorithm was easy fall into local optimum,the convergence speed was slow in the late path search,and the path was not smooth in the robot path planning.An improve simulated annealing adaptive particle swarm optimization algorithm was proposed.The algorithm combined the advantages of simulated annealing and particle swarm optimization.In the early stage of the algorithm route search was fast,and the algorithm had the ability of sudden jump in the path search process,which could effectively avoid falling into the local optimal path.Using cubic spline interpolation smooth the path,and the convergence precision of the late search path was high.The simulation results showed that the algorithm could quickly find the shortest smooth path in different obstacle models,and the path effect was better than the traditional method.

参考文献/References:

[1] WILLMS A R,YANG S X.An efficient dynamic system for real-time robot-path planning[J].IEEE transactions on systems man and cybernetics,2006,36(4):755-766.

[2] FUJIMURA K,SAMET H.A hierarchical strategy for path planning among moving obstacles (mobile robot) [J].IEEE transactions on robotics and automation,1989,5(1):61-69.
[3] SASKA M,MACAS M,PREUCIL L,et al.Robot path planning using particle swarm optimization of ferguson splines[C] //IEEE Conference on Emerging Technologies and Factory Automation.Prague:IEEE,2006:833-839.
[4] 刘广瑞,刘军,孔令云.移动机器人路径规划蚁群算法及其收敛性分析[J].郑州大学学报(工学版),2012,33(2):24-27.
[5] 赵开新,王东署.未知环境中自主机器人的路径规划研究[J].郑州大学学报(工学版),2013,34(5):74-79.
[6] 陈志军,曾蒸.基于模糊神经网络和遗传算法的机器人三维路径规划[J].重庆师范大学学报(自然科学版),2018,35(1):93-99.
[7] 强宁,高洁,康凤举.基于PSO和三次样条插值的多机器人全局路径规划[J].系统仿真学报,2017,29(7):1397-1404.
[8] CLERC M,KENNEDY J.The particle swarm-explosion,stability and convergence in a multi-dimensional complex space[J].IEEE transactions on evolutionary computation,2002,6(1):58-73.
[9] 宋莉,李彩虹,朱宝艳,等.基于两点法的移动机器人局部路径规划算法[J].山东理工大学学报(自然科学版),2018,32(1):10-14.

相似文献/References:

[1]严晶晶,阎新芳,冯岩.WSN中基于梯度和粒子群优化算法的分级簇算法[J].郑州大学学报(工学版),2016,37(02):33.[doi:10.3969/j.issn.1671-6833.201505017]
 Yan Xinfang,Yan Jingjing,Feng Yan.Gradient and Particle Swarm Optimization Based Hierarchical Cluster Algorithm in WSN[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):33.[doi:10.3969/j.issn.1671-6833.201505017]
[2]曹奔,袁忠于,刘洪.基于粒子群算法的烧结炉系统辨识及神经网络控制[J].郑州大学学报(工学版),2017,38(05):39.[doi:10.13705/j.issn.1671-6833.2017.02.022]
 Cao Ben,Yuan Zhong,Yu Liu Hong.Sintering Furnace System Identification Based on Particle Swarm Algorithm and Neural Network Control[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):39.[doi:10.13705/j.issn.1671-6833.2017.02.022]
[3]余琍,徐霜,万强.基于学习理论的改进粒子群优化算法[J].郑州大学学报(工学版),2019,40(02):32.[doi:10.13705/j.issn.1671-6833.2019.02.007]
 Xu Shuang,Wanqiang,Yu Li.Improved Particle Swarm Optimization Algorithm Based on Learning Theory[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):32.[doi:10.13705/j.issn.1671-6833.2019.02.007]
[4]薛金花,王德顺,郁正纲,等.基于风电可调节不确定代价的风光柴储联合优化调度[J].郑州大学学报(工学版),2019,40(05):72.[doi:10.13705/j.issn.1671-6833.2019.05.006]
 Xue Jinhua,Wang Deshun,Yu Zhenggang,et al.Combined Optimal Scheduling of Wind, Diesel and Storage Based on Adjustable Uncertain Cost of Wind Power[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):72.[doi:10.13705/j.issn.1671-6833.2019.05.006]
[5]马细霞,储冬冬..粒子群优化算法在水库调度中的应用分析[J].郑州大学学报(工学版),2006,27(04):121.[doi:10.3969/j.issn.1671-6833.2006.04.029]
 Ma Xiaoxia,Storage winter winter.Application analysis of particle swarm optimization algorithm in reservoir scheduling [J].Journal of Zhengzhou University (Engineering Science),2006,27(04):121.[doi:10.3969/j.issn.1671-6833.2006.04.029]

更新日期/Last Update: 2020-10-07