[1]曹奔,袁忠于,刘洪.基于粒子群算法的烧结炉系统辨识及神经网络控制[J].郑州大学学报(工学版),2017,38(05):39-43.[doi:10.13705/j.issn.1671-6833.2017.02.022]
 Cao Ben,Yuan Zhong,Yu Liu Hong.Sintering Furnace System Identification Based on Particle Swarm Algorithm and Neural Network Control[J].Journal of Zhengzhou University (Engineering Science),2017,38(05):39-43.[doi:10.13705/j.issn.1671-6833.2017.02.022]
点击复制

基于粒子群算法的烧结炉系统辨识及神经网络控制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
38
期数:
2017年05期
页码:
39-43
栏目:
出版日期:
2017-09-26

文章信息/Info

Title:
Sintering Furnace System Identification Based on Particle Swarm Algorithm and Neural Network Control
作者:
曹奔袁忠于刘洪
兰州交通大学机电工程学院,甘肃兰州,730070
Author(s):
Cao Ben Yuan Zhong Yu Liu Hong
School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070
关键词:
粒子群算法系统辨识神经网络监督控制PID控制
Keywords:
DOI:
10.13705/j.issn.1671-6833.2017.02.022
文献标志码:
A
摘要:
烧结炉在加热过程中,模型参数易发生变化,而传统的PID控制很难达到理想的控制效果.本文运用粒子群优化算法辨识烧结炉的数学模型,针对烧结炉惯性大、时变、大滞后等特点,采用基于RBF神经网络的监督控制,将PID控制与神将网络控制相结合.当温度或模型参数发生较大变化时,PID控制起主要作用,神经网络起调节作用,补偿PID控制的不足.MATLAB软件仿真结果说明,该方法能够提高烧结炉的控制精度,具有一定的实用性.
Abstract:
During heating process of sintering furnace,the model parameters were easy to change,and traditional PID control was difficult to achieve the desired control effect.This paper used particle swarm optimization algorithm to identify the mathematical model of sintering furnace,for sintering furnace with high inertia,time-variation and strong time delay etc,a method of supervision and control based on RBF neural network,which combined PID control with neural network control.When temperature or parameters changed greatly,PID control played a major role.neural network played a regulatory role and compensated the shortage of PID control.The simulation results of MATLAB software showed that this method could improve the control precision of sintering furnace,which had a certain practicality.

相似文献/References:

[1]刘冲,朱晓东,郭雅默.基于烟花算法与差分进化算法的模糊分类系统设计[J].郑州大学学报(工学版),2015,36(06):47.[doi:10.3969/j. issn.1671 -6833.2015.06.009]
 ZHU Xiaodong,LIU Chong,GUO Yamo.Design of Fuzzy Classification System Based on Fireworks Optimization and Differential Evolution Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(05):47.[doi:10.3969/j. issn.1671 -6833.2015.06.009]
[2]严晶晶,阎新芳,冯岩.WSN中基于梯度和粒子群优化算法的分级簇算法[J].郑州大学学报(工学版),2016,37(02):33.[doi:10.3969/j.issn.1671-6833.201505017]
 Yan Xinfang,Yan Jingjing,Feng Yan.Gradient and Particle Swarm Optimization Based Hierarchical Cluster Algorithm in WSN[J].Journal of Zhengzhou University (Engineering Science),2016,37(05):33.[doi:10.3969/j.issn.1671-6833.201505017]
[3]余琍,徐霜,万强.基于学习理论的改进粒子群优化算法[J].郑州大学学报(工学版),2019,40(02):32.[doi:10.13705/j.issn.1671-6833.2019.02.007]
 Xu Shuang,Wanqiang,Yu Li.Improved Particle Swarm Optimization Algorithm Based on Learning Theory[J].Journal of Zhengzhou University (Engineering Science),2019,40(05):32.[doi:10.13705/j.issn.1671-6833.2019.02.007]
[4]薛金花,王德顺,郁正纲,等.基于风电可调节不确定代价的风光柴储联合优化调度[J].郑州大学学报(工学版),2019,40(05):72.[doi:10.13705/j.issn.1671-6833.2019.05.006]
 Xue Jinhua,Wang Deshun,Yu Zhenggang,et al.Combined Optimal Scheduling of Wind, Diesel and Storage Based on Adjustable Uncertain Cost of Wind Power[J].Journal of Zhengzhou University (Engineering Science),2019,40(05):72.[doi:10.13705/j.issn.1671-6833.2019.05.006]
[5]高岳林,武少华.基于自适应粒子群算法的机器人路径规划[J].郑州大学学报(工学版),2020,41(04):46.[doi:10.13705/j.issn.1671-6833.2020.01.004]
 GAO Yuelin,WU Shaohua.Robot Path Planning Based on Adaptive Particle Swarm Optimization[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):46.[doi:10.13705/j.issn.1671-6833.2020.01.004]
[6]马细霞,储冬冬..粒子群优化算法在水库调度中的应用分析[J].郑州大学学报(工学版),2006,27(04):121.[doi:10.3969/j.issn.1671-6833.2006.04.029]
 Ma Xiaoxia,Storage winter winter.Application analysis of particle swarm optimization algorithm in reservoir scheduling [J].Journal of Zhengzhou University (Engineering Science),2006,27(05):121.[doi:10.3969/j.issn.1671-6833.2006.04.029]
[7]高宝成,刘红霞,杨叔子.神经网络用于结构动荷载识别的研究[J].郑州大学学报(工学版),1996,17(02):93.
 Gao Baocheng,Liu Hongxia,Uncle Yang.Neural network is used for the study of structural dynamic load recognition[J].Journal of Zhengzhou University (Engineering Science),1996,17(05):93.

更新日期/Last Update: