[1]张春江,高亮,吴擎,等.基于分解的多目标进化算法在工程优化中的应用[J].郑州大学学报(工学版),2015,36(06):38.[doi:10.3969/ j. issn.1671 -6833.2015.06.008]
 ZHANG Chunjiang,TAN Kay Chen,GAO Liang,et al.Multi-Objective Evolutionary Algorithm Based on Decomposition for Engineering Optimization[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):38.[doi:10.3969/ j. issn.1671 -6833.2015.06.008]
点击复制

基于分解的多目标进化算法在工程优化中的应用()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
36
期数:
2015年06期
页码:
38
栏目:
出版日期:
2015-12-25

文章信息/Info

Title:
Multi-Objective Evolutionary Algorithm Based on Decomposition for Engineering Optimization
作者:
张春江高亮吴擎Kay Chen Tan
1.华中科技大学机械科学与工程学院,湖北武汉430074; 2. Department of Electrical and Computer En-gineering,National University of Singapore,Singapore 117583;3.华中农业大学工学院,湖北武汉430070
Author(s):
ZHANG Chunjiang12TAN Kay Chen2GAO Liang1 wU qing3
1. School of Mechanical Scinece & Engineering,Huazhong University of Science and’Technology,Wuhan 430074,China,2.Department of Electrical and Computer Engineering,National University of Singapore,Singapore 117583; 3.School of Engineer-ing,Huazhong Agricultural University ,Wuhan 430070,China
关键词:
多目标进化算法 MOEA/D归一化工程优化差分进化约束处理
Keywords:
multi-objective evolutionary algorithmMOEA/D normalization engineering optimization dif-ferential evolution s-constraint handling
DOI:
10.3969/ j. issn.1671 -6833.2015.06.008
文献标志码:
A
摘要:
将基于分解的多目标进化算法(Muli-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应﹖约束差分进化算法( e Constrained Differential Evolution, gDE)寻找各个目标在Pareto前沿上的最大值和最小值,利用这些值对各目标进行归一化处理;然后,用MOEA/D进行求解,并在算法中加入了自适应s约束处理技术;最后,采用一个标准测试问题和一个焊接梁设计优化问题对该算法进行测试,并与其他两种归一化方法进行了比较.根据提出的方法,MOEA/D能对Pare-to前沿的一端进行集中优化,因而能处理一些Pareto前沿两端难以优化的问题.
Abstract:
 In order for effective application of Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D) in engineering optimization,normalization of the range of objective values is needed. A self-a-daptive s constrained Differential Evolution ( gDE) algorithm is proposed to obtain the minimum and maximumvalues of each objective on the Pareto Front ( PF). After normalization,MOEA/D can then be effectively ap-plied. In addition ,the self-adaptive s constraint method is combined with MOEA/D for constraint handling. Abenchmark problem and a weld bean design problem are used to evaluate the performance of the algorithm a-gainst two other normalization methods. One main advantage of the proposed method is the selective concen-trated optimization on some regions on the Pareto front which allows handling of problems where regions of Pa-reto front are difficult to be optimized.

参考文献/References:

[1]SCHAFFER,DAVID J. Some experiments in machinelearning using vector evaluated genetic algorithmsD]. Nashville,TN ( USA) : Vanderbilt Univ,1985.

[2]ZITZLER E,LAUMANNS M ,THIELE L. SPEA2: Im-proving the strength pareto evolutionary algorithm formultiobjective optimizationR].Zurich: Computer En-gineering and Networks Laboratory( TIK),Swiss FederalInstitute of Technology( ETH),2001: 19 - 21.
[3]DEB K,PRATAP A,AGARWAL S,et al. A fast andelitist multiobjective genetic algorithm: NSGA - I1.IEEE Transactions on Evolutionary Computation,2002,6( 2): 182 -197.

相似文献/References:

[1]肖俊明.周谦,瞿博阳,韦学辉.多目标进化算法及其在电力环境经济调度中的应用综述[J].郑州大学学报(工学版),2016,37(02):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
 Xiao Junming,Zhou Qian,Qu Boyang,et al.Multi-objective Evolutionary Algorithm and Its Application in Electric Power Environment Economic Dispatch[J].Journal of Zhengzhou University (Engineering Science),2016,37(06):1.[doi:Multi-objective Evolutionary Algorithm and Its Ap]
[2]邓立宝,吴怡然,郭苏.基于分解多目标进化的椭圆定日镜场布局[J].郑州大学学报(工学版),2020,41(05):37.[doi:10.13705/j.issn.1671-6833.2020.03.012]
 DENG Libao,WU Yiran,GUO Su.Elliptical Heliostat Field Layout Optimization Based on MOEA/D[J].Journal of Zhengzhou University (Engineering Science),2020,41(06):37.[doi:10.13705/j.issn.1671-6833.2020.03.012]

更新日期/Last Update: