[1]牛贞贞.自适应模糊C均值聚类算法的电力负荷特性分类技术研究[J].郑州大学学报(工学版),2015,36(06):56.[doi:10.3969/j.issn.1671 -6833.2015.06.01 1]
 ZHAO Guosheng,NIU Zhenzhen,LIU Yongguang,et al.Power Load Characteristic Classification Technology Research Based on An Improved Fuzzy C-means Clustering Algorithm[J].Journal of Zhengzhou University (Engineering Science),2015,36(06):56.[doi:10.3969/j.issn.1671 -6833.2015.06.01 1]
点击复制

自适应模糊C均值聚类算法的电力负荷特性分类技术研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
36
期数:
2015年06期
页码:
56
栏目:
出版日期:
2015-12-25

文章信息/Info

Title:
Power Load Characteristic Classification Technology Research Based on An Improved Fuzzy C-means Clustering Algorithm
作者:
牛贞贞
1.郑州大学电气工程学院,河南郑州450001;2.河南许继仪表有限公司,河南许昌461000)
Author(s):
ZHAO Guosheng1NIU Zhenzhen1LIU Yongguang2 SUN Chaoliang2
( 1.School of Electrical Engineering,Zhengzhou University,Zhengzhou 450001 , China;2.Henan Xu Ji Instrument Co.Ixd,Xuchang 461000,China)
关键词:
负荷聚类C均值聚类算法负荷特性日负荷曲线
Keywords:
load clusteringFCM load characteristicdaily load curve
DOI:
10.3969/j.issn.1671 -6833.2015.06.01 1
文献标志码:
A
摘要:
针对传统模糊C均值聚类算法(FCM)存在的缺点,提出了一种自适应FCM算法,该算法以类内距离MIA和类间距离MDC两个聚类结果评价指标为基础,把MDC和MIA的比值1作为自适应函数来确定FCM算法的聚类数目c;同时,根据模糊决策的方法,利用FCM算法的目标函数和划分嫡来共同确定最优的模糊加权指数m的取值.结果表明:该算法不仅能够克服FCM算法无法自动确定聚类数目和模糊加权指数需要凭经验给出的缺点,而且得到的聚类结果是最优的,通过算例分析也证明了该算法的正确性和有效性.
Abstract:
In view of the disadvantages of the traditional Fuy C-means clustering algorithm, the author pro-poses an adaptive FCM algorithm. This algorithm is based on two clustering results evaluation index of withinthe class distance MIA and between the class distance MDC. The ratio of MDC and MIA,defined as l, is anadaptive function to determine the clustering number c of FCM algorithm. At the same time,according to thefuzy decision method,we use the objective function and partition entropy of FCM algorithm together to deter-mine the value of optimal fuzzy weighted m. ’This algorithm not only overcomes the FCM algorithm disadvan-tage of not being able to determine the clustering number automatically and fuzzy weighted index needs to begiven by experience,but also the clustering result is optimal. Finally,the correctness and effectiveness of thealgorithm were proved through example analysis.

参考文献/References:

[1]王冬利.电力需求侧管理实用技术M].北京:中国电力出版社,2005:7 - 14.

[2]黄永皓,康重庆,夏清,等.用户分类电价决策方法的研究0﹒中国电力,2004,37( 1):24 -28.
[3]徐明.基于负荷特性分析的错峰方案研究D]﹒广州:华南理工大学电力学院,2012:17 -19.

更新日期/Last Update: