[1]杨博凯,卢义玉,杨晓峰,等.空化水射流空泡溃灭过程的数值分析[J].郑州大学学报(工学版),2012,33(04):60-64.[doi:10.3969/j.issn.1671-6833.2012.04.014]
YANG Bokai,LU Yiyu,YANG Xiaofeng,et al.Numerical Analysis on Collapse of Cavitation Bubble in a Water Jet Flow[J].Journal of Zhengzhou University (Engineering Science),2012,33(04):60-64.[doi:10.3969/j.issn.1671-6833.2012.04.014]
点击复制
空化水射流空泡溃灭过程的数值分析(
)
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
33
- 期数:
-
2012年04期
- 页码:
-
60-64
- 栏目:
-
- 出版日期:
-
2012-07-10
文章信息/Info
- Title:
-
Numerical Analysis on Collapse of Cavitation Bubble in a Water Jet Flow
- 作者:
-
杨博凯; 卢义玉; 杨晓峰; 等.
-
重庆大学资源及环境科学学院,重庆,400030, 重庆大学资源及环境科学学院,重庆,400030, 重庆大学资源及环境科学学院,重庆,400030, 重庆大学资源及环境科学学院,重庆,400030, 重庆大学资源及环境科学学院,重庆,400030
- Author(s):
-
YANG Bokai; LU Yiyu; YANG Xiaofeng; etc;
-
College of Resources & Environmental Science, Chongqing University, Chongqing 400030, China
-
- 关键词:
-
空泡; Rayleigh-Plesset方程; 固定时间步长; 变步长法
- Keywords:
-
bubble; Rayleigh-Plesset equation; consant time step; variable time step
- 分类号:
-
TB126
- DOI:
-
10.3969/j.issn.1671-6833.2012.04.014
- 摘要:
-
空化空泡发育与溃灭的计算是研究空化水射流的一个重点和难点.对比分析了空泡运动方程即Rayleigh-Plesset方程的不同数值解法,并针对固定时间步长的缺点,提出了变步长法解RayleighPlesset方程的思路.通过优化系数λ=Ri/Ri-1,得出如下分析结果:在空泡内外压力变化的不同情况下,变步长法均优于固定步长法且没有奇异点.变步长法在节约计算量,保证结果精度等方面都有较好表现,该方法为研究空化水射流提供新的思路和算法.
- Abstract:
-
Calculation on cavitation bubble growth and collapse is key to study the cavitating water jet. Afterthe analysis of different numerical methods to Rayleigh-Plesset equation, a numerica! method with variable-steps is developed that can overcome the weak point of constant time step method to solve the Rayleigh-Plessetequation, And it also learned that a constant time step is not appropriate for solving the Rayleigh-Plesset equa-tion when dealing with large pressure variations or under the smaller pressure variation. The variable time stegmethod ean get a better result. What more, it is only after the variable time step method can be predictedwithout singularity, So the variable time step method is batter than the constant time step method in savingcomputational and keeping accuracy, This paper provides a new idea to solve Rayleigh-Plesset equation.
更新日期/Last Update:
1900-01-01