[1]王杰,王晓换..滚动轴承故障诊断虚拟系统的实现[J].郑州大学学报(工学版),2010,31(02):120.
 WANG Jie,WANG Xiaochange.Development of a Virtual Fault Diagnostic System For Rolling Bearing[J].Journal of Zhengzhou University (Engineering Science),2010,31(02):120.
点击复制

滚动轴承故障诊断虚拟系统的实现()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
31
期数:
2010年02期
页码:
120
栏目:
出版日期:
2010-02-02

文章信息/Info

Title:
Development of a Virtual Fault Diagnostic System For Rolling Bearing
作者:
王杰王晓换.
郑州大学,电气工程学院,河南,郑州,450001, 郑州大学,电气工程学院,河南,郑州,450001
Author(s):
WANG Jie; WANG Xiaochange
School of Electric Engineering,Zhengzhou University,Zhengzhou 450001,China
关键词:
滚动轴承 故障诊断 虚拟系统 粗糙集 BP神经网络
Keywords:
olling beatingfault diagnosisvirtual systemrough setsBP neural network
文献标志码:
A
摘要:
针对滚动轴承,实现了一种粗糙集理论和神经网络技术相结合的新型的故障诊断虚拟系统.该系统利用粗糙集对知识的约简能力,对采集的故障征兆数据进行预处理,即采用竞争学习神经网络把连续属性离散化,将结果导入Rosetta软件中逐步分析处理,得到最小条件属性集,在此基础上构建BP神经网络进行故障识别,将网络输出送回LabView进行显示.实例分析表明,该系统可以提高滚动轴承故障诊断的收敛速度,在期望误差相同的情况下,网络训练时间减小了176步.
Abstract:
Aiming at rolling bearings,the implementation procedure of a new style fault diagnostic system ispresented in this paper.The combination of rough sets and BP neural network are adopted in the design of thediagnostic system.Utilizing the knowledge reduction ability of rough sets theory,the diagnostic system prepro—cesses the collected fault symptom data at first,i.e.the discretization of continuous attributes by using compe—tition learning neural networks.The intermediate output is introduced to software of“Rosetta”to be analyzedstep by step until the smallest condition attributed sets are obtained。Based on the smallest condition attributedsets,the BP networks are built,which are used to recognize the faults of rolling bearings and then transfer thefault states back to LabView for displaying.The example analysis indicated that the system can enhance faultdiagnosis convergence speed and the network training time reduces 1 76 steps at the same expected error.

相似文献/References:

[1]陆森林,王龙.CEEMD-FFT在滚动轴承故障诊断中的应用[J].郑州大学学报(工学版),2015,36(01):75.[doi:10.3969/ j.issn. 1671 -6833.2015.01.018]
 LU Sen-lin,WANG Long.Application of CEEMD-FFT in Roller Bearing Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2015,36(02):75.[doi:10.3969/ j.issn. 1671 -6833.2015.01.018]
[2]李凌均,金兵,马艳丽,等.基于MEMD与MMSE的滚动轴承退化特征提取方法[J].郑州大学学报(工学版),2018,39(04):86.[doi:1013705/j.issn.1671-6833.2018.01.004]
 Li Lingjun,Jin Bingma,Yanli Han,et al.The Method of Degradation Feature Extraction of Rolling Bearing Based on MEMD and Multivariate Multiscale Entropy[J].Journal of Zhengzhou University (Engineering Science),2018,39(02):86.[doi:1013705/j.issn.1671-6833.2018.01.004]
[3]郝伟,林辉翼,郝旺身,等.基于全矢稀疏编码的滚动轴承故障识别方法[J].郑州大学学报(工学版),2019,40(03):6.[doi:10.13705/j.issn.1671-6833.2018.03.007]
 Hao Wei,Lin Huiyi,Hao Wangshen,et al.Fault Recognition Method of Rolling Bearing Based on Full Vector Sparse Coding[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):6.[doi:10.13705/j.issn.1671-6833.2018.03.007]
[4]雷文平,宋圣霖,郝旺身,等.基于FV-FBE的滚动轴承故障诊断研究[J].郑州大学学报(工学版),2020,41(05):82.[doi:10.13705/j.issn.1671-6833.2020.03.020]
 LEI Wenping,SONG Shenglin,HAO Wangshen,et al.Fault Diagnosis of Rolling Bearing Based on FV-FBE[J].Journal of Zhengzhou University (Engineering Science),2020,41(02):82.[doi:10.13705/j.issn.1671-6833.2020.03.020]
[5]刘洋,李凌均,王宇,等.基于FIF-CYCBD的滚动轴承故障特征提取方法研究[J].郑州大学学报(工学版),2022,43(04):35.[doi:10.13705/j.issn.1671-6833.2022.01.004]
 LIU Yang,LI Lingjun,WANG Yu,et al.Fault Feature Extraction Method of Rolling Bearings Based on FIF-CYCBD[J].Journal of Zhengzhou University (Engineering Science),2022,43(02):35.[doi:10.13705/j.issn.1671-6833.2022.01.004]
[6]王忠勇,张振兴,段琳琳,等.基于故障树的某型舰炮故障诊断系统的设计与实现[J].郑州大学学报(工学版),2010,31(03):46.[doi:10.3969/j.issn.1671-6833.2010.03.012]
 Wang Zhongyong,ZHANG Zhenxing,DUAN Linlin,et al.Design and implementation of a certain type of naval gun fault diagnosis system based on fault tree[J].Journal of Zhengzhou University (Engineering Science),2010,31(02):46.[doi:10.3969/j.issn.1671-6833.2010.03.012]
[7]刘景艳,李玉东,杨晓邦..遗传神经网络在齿轮故障诊断中的应用[J].郑州大学学报(工学版),2012,33(03):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
 LIU Jingyan,LI Yudong,YANG Xiaobang.Application of Genetic Neural Network to Gear Fault Diagnosis[J].Journal of Zhengzhou University (Engineering Science),2012,33(02):36.[doi:10.3969/j.issn.1671-6833.2012.03.009]
[8]齐保林,李凌均,李志农..基于支持向量机的故障模式识别研究[J].郑州大学学报(工学版),2007,28(01):9.[doi:10.3969/j.issn.1671-6833.2007.01.003]
 Qi Baolin,LI Lingjun,Li Zhinong.Research on failure mode recognition based on support vector machine[J].Journal of Zhengzhou University (Engineering Science),2007,28(02):9.[doi:10.3969/j.issn.1671-6833.2007.01.003]
[9]刘艳芳,周晓微,梁萌..人工神经网络在生物过程中的应用[J].郑州大学学报(工学版),2007,28(02):121.[doi:10.3969/j.issn.1671-6833.2007.02.031]
 LIU Yanfang,ZHOU Xiaowei,Liang Meng.Application of artificial neural networks in biological processes[J].Journal of Zhengzhou University (Engineering Science),2007,28(02):121.[doi:10.3969/j.issn.1671-6833.2007.02.031]
[10]石金彦,黄士涛,雷文平..粗糙集与决策树结合诊断故障的数据挖掘方法[J].郑州大学学报(工学版),2003,24(01):109.[doi:10.3969/j.issn.1671-6833.2003.01.027]
 Shi Jinyan,HUANG Shitao,Raven Ping.A data mining method that combines rough sets with decision trees to diagnose failures[J].Journal of Zhengzhou University (Engineering Science),2003,24(02):109.[doi:10.3969/j.issn.1671-6833.2003.01.027]

更新日期/Last Update: 1900-01-01