[1]李清富,邓宇,杜卫兵..碳纤维布加固钢纤维混凝土梁的抗弯性能预测[J].郑州大学学报(工学版),2004,25(04):1-3.[doi:10.3969/j.issn.1671-6833.2004.04.001]
 LI Qingfu,DENG Yu,Du Weibing.Prediction of bending performance of carbon fiber reinforced steel fiber concrete beams with carbon fiber cloth[J].Journal of Zhengzhou University (Engineering Science),2004,25(04):1-3.[doi:10.3969/j.issn.1671-6833.2004.04.001]
点击复制

碳纤维布加固钢纤维混凝土梁的抗弯性能预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
25
期数:
2004年04期
页码:
1-3
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Prediction of bending performance of carbon fiber reinforced steel fiber concrete beams with carbon fiber cloth
作者:
李清富邓宇杜卫兵.
郑州大学环境与水利学院,河南,郑州,450002, 河南省水利科学研究所,河南,郑州,450003
Author(s):
LI Qingfu; DENG Yu; Du Weibing
关键词:
BP神经网络 碳纤维布 钢筋钢纤维混凝土梁 抗弯承载力 预测
Keywords:
DOI:
10.3969/j.issn.1671-6833.2004.04.001
文献标志码:
A
摘要:
在碳纤维布加固钢筋钢纤维混凝土梁中,加固效果要受到被加固结构本身性能、加固材料性能以及荷载情况等因素的影响,因此,加固效果具有极高的非线性.针对这一问题, 在试验研究的基础上,运用神经网络方法,以钢纤维混凝土强度、截面尺寸、纵向钢筋配筋率等10个变量作为输入单元,以加固梁的抗弯承载力作为输出单元,建立了预测加固梁抗弯承载力的BP神经网络模型.通过预测值与试验值的对比分析,验证了该模型的科学性和合理性.
Abstract:
In the reinforced steel fiber concrete beam reinforced by carbon fiber cloth, the reinforcement effect is affected by the performance of the reinforced structure itself, the performance of the reinforcement material and the load situation, so the reinforcement effect has a very high nonlinearity. In order to solve this problem, on the basis of experimental research, a BP neural network model for predicting the bending bearing capacity of reinforced beams is established by using the neural network method, taking 10 variables such as steel fiber concrete strength, section size, longitudinal reinforcement ratio as input units, and the bending bearing capacity of reinforced beams as output units. Through the comparative analysis of the predicted value and the experimental value, the scientificity and rationality of the model are verified.

相似文献/References:

[1]刘广瑞,周文博,田欣,等.多传感器信息融合在焊接质量控制中的应用[J].郑州大学学报(工学版),2017,38(05):28.[doi:10.13705/j.issn.1671-6833.2017.02.025]
 Liu Guangrui,Zhou Wenbo,Tian Xin,et al.Application of Information Fusion in Welding based on Arc and Ultrasonic sensor[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):28.[doi:10.13705/j.issn.1671-6833.2017.02.025]
[2]蔡婉贞,黄 翰.基于 BP-RBF神经网络的组合模型预测港口物流需求研究[J].郑州大学学报(工学版),2019,40(05):84.[doi:10.13705/j.issn.1671-6833.2019.02.025]
 Cai Wanzhen,Huang Han.Research on Port Logistics Demand Forecasting Based on Combination Model of BP-RBF Neural Network[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):84.[doi:10.13705/j.issn.1671-6833.2019.02.025]
[3]孙国栋,江亚杰,徐亮,等.BP网络预测阈值的仪表重影字符识别方法研究[J].郑州大学学报(工学版),2020,41(04):28.[doi:10.13705/j.issn.1671-6833.2020.04.011]
 SUN Guodong,JIANG Yajie,XU Liang,et al.Study on Instrument Ghosting Character Recognition Method for Predicting Binarization Threshold by BP Network[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):28.[doi:10.13705/j.issn.1671-6833.2020.04.011]
[4]冯冬青,郭艳..遗传算法改进BP神经网络在地下水水质评价中的应用[J].郑州大学学报(工学版),2009,30(03):126.
 FENG Dongqing,GUO Yan.Application of Imoproved BP Neural Networks Based on Genetic Algorithms toGroundwater Quality Evaluation[J].Journal of Zhengzhou University (Engineering Science),2009,30(04):126.
[5]张峰峰,孙立宁,杜志江,等.基于BP神经网络的虚拟手术实时仿真技术研究[J].郑州大学学报(工学版),2007,28(04):43.[doi:10.3969/j.issn.1671-6833.2007.04.011]
 ZHANG Fengfeng,SUN Lining,Du Zhijiang,et al.Research on real-time simulation technology of virtual surgery based on BP neural network[J].Journal of Zhengzhou University (Engineering Science),2007,28(04):43.[doi:10.3969/j.issn.1671-6833.2007.04.011]

更新日期/Last Update: 1900-01-01