[1]陈建梅,张长春,张国强.逆矩阵中若干问题的研究[J].郑州大学学报(工学版),1995,16(04):107-110.
Chen Jianmei,Zhang Changchun,Zhang Guoqiang.Research on several issues in the counter -matrix[J].Journal of Zhengzhou University (Engineering Science),1995,16(04):107-110.
点击复制
逆矩阵中若干问题的研究()
《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]
- 卷:
-
16
- 期数:
-
1995年04期
- 页码:
-
107-110
- 栏目:
-
- 出版日期:
-
1995-04-28
文章信息/Info
- Title:
-
Research on several issues in the counter -matrix
- 作者:
-
陈建梅; 张长春; 张国强
-
郑州工学院数力系,安阳大学
- Author(s):
-
Chen Jianmei; Zhang Changchun; Zhang Guoqiang
-
Zhengzhou Institute of Technology Digital Power Department, Anyang University
-
- 关键词:
-
复方阵; 两矩阵的乘法及相等; 转置矩阵; 克莱姆法则; 逆矩阵; 行列式
- Keywords:
-
Compound arrays; multiplication of two matrix; equal; conversion matrix; Klaim law; inverse matrix; ranked
- 文献标志码:
-
A
- 摘要:
-
本文首先利用两矩阵的乘法及其相等的定义和克莱姆法则,对AB=BA=E=AB=E(或BA=E)进行了证明。其次将逆矩阵的定义AB=BA=E简化为AB=E(或BA=E)后,又证明了逆矩阵存在的必要充分条件及唯一性。
- Abstract:
-
This article first uses the multiplication of the two matrices and its equal definitions and the Claim rule to prove AB = BA = E = AB = E (or BA = E). Secondly, after simplifying the definition of the inverse matrix, the definition of the inverse matrix is simplified to AB = E (or BA = E), it also proves the necessary adequate conditions and uniqueness of the inverse matrix.
更新日期/Last Update:
1900-01-01