[1]陈建梅,张长春,张国强.逆矩阵中若干问题的研究[J].郑州大学学报(工学版),1995,16(04):107-110.
 Chen Jianmei,Zhang Changchun,Zhang Guoqiang.Research on several issues in the counter -matrix[J].Journal of Zhengzhou University (Engineering Science),1995,16(04):107-110.
点击复制

逆矩阵中若干问题的研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
16
期数:
1995年04期
页码:
107-110
栏目:
出版日期:
1995-04-28

文章信息/Info

Title:
Research on several issues in the counter -matrix
作者:
陈建梅张长春张国强
郑州工学院数力系,安阳大学
Author(s):
Chen Jianmei Zhang Changchun Zhang Guoqiang
Zhengzhou Institute of Technology Digital Power Department, Anyang University
关键词:
复方阵两矩阵的乘法及相等转置矩阵克莱姆法则逆矩阵行列式
Keywords:
Compound arrays multiplication of two matrix equal conversion matrix Klaim law inverse matrix ranked
文献标志码:
A
摘要:
本文首先利用两矩阵的乘法及其相等的定义和克莱姆法则,对AB=BA=E=AB=E(或BA=E)进行了证明。其次将逆矩阵的定义AB=BA=E简化为AB=E(或BA=E)后,又证明了逆矩阵存在的必要充分条件及唯一性。
Abstract:
This article first uses the multiplication of the two matrices and its equal definitions and the Claim rule to prove AB = BA = E = AB = E (or BA = E). Secondly, after simplifying the definition of the inverse matrix, the definition of the inverse matrix is ​​simplified to AB = E (or BA = E), it also proves the necessary adequate conditions and uniqueness of the inverse matrix.
更新日期/Last Update: 1900-01-01