郑州大学学报(工学版) /oa 基于状态估计的车辆横摆稳定性分析方法研究 /oa/darticle.aspx?type=view&id=202401037 <span style=""> <p style="text-indent: 0pt;"> <span style="font-size: 9pt; font-family: 宋体;"> <span style="font-family: 宋体;">针对车辆横摆稳定性分析过程中状态参数难以获取、分析结果单一等问题</span> <span style="font-family: 宋体;">,建立了二自由度车辆模型作为横摆稳定性分析和状态估计的参考模型;采用质心侧偏角及其角速度构建相平面,以分析车辆横摆稳定性,设计了基于多层感知机的工况自适应相平面稳定域,根据车辆实时状态及相平面稳定域构建横摆稳定性评价指标———横摆稳定度;设计了一种基于扩展卡尔曼滤波的车辆状态估计算法,提出了一种基于状态估计的车辆横摆稳定性分析方法;为验证所提出的横摆稳定性分析方法的有效性与实用性,在双移线工况下进行 100 km / h 仿真试验与30 km / h 实车试验。仿真与实车试验结果表明:基于状态估计的横摆稳定性分析方法的质心侧偏角估计平均误差小于0.1°,纵向速度估计平均误差小于 0. 03 m / s,该方法能够根据估计的车辆状态参数输入将横摆稳定性量化到0</span> </span> <span style="font-size: 9pt; font-family: 宋体;"> <span style="font-family: 宋体;">-</span></span> <span style="font-size: 9pt; font-family: 宋体;">1 范围内,体现车辆横摆稳定性的动态变化。</span> </p> </span> <br /> 2025年01月30 00:00 2024年pre1 8 1718230 寇发荣,常航涛,王倩磊,方博 基于TD3算法的光伏电站参与电力系统频率控制策略 /oa/darticle.aspx?type=view&id=202405011 针对光伏电力输出具有间歇性和随机性对维持系统频率稳定构成的挑战,本文提出了一种基于深度强化学习的快速频率调节方法,该方法无需依赖特定的机理模型,适用于解决与光伏发电相关的强不确定性问题。首先,本文构建了一个简化的光伏发电系统模型。随后,基于双延迟深度确定性策略梯度算法设计了一种新型频率控制器。未验证所提控制策略的有效性,将其与传统下垂控制、滑模控制及基于深度确定性策略梯度算法的控制策略进行了比较。仿真结果表明,在施加两种不同的负荷扰动后,基于所提控制策略的性能指标表现优异,如最大频率偏差低于其他控制算法,充分验证了所提控制策略的有效性和优越性。 2025年01月30 00:00 2024年pre1 9 2620703 张建华,陶莹,赵思 基于深度强化学习的无人机边缘计算任务卸载策略 /oa/darticle.aspx?type=view&id=202404070 <span style=""> <p style="text-indent: 18pt;"> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">针对地理条件较为复杂的环境中存在的缺乏基础设施</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">、</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">任务延时高和带宽需求量大等问题</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">提出一种联合任务卸载和功率分配的多级移动边缘计算</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">(</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">MEC</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">)</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">系统模型</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">。</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">所提模型考虑将配备</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">MEC </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">的服务器部署在无人机附近提供计算服务</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">综合分析无人机的任务卸载</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">、</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">功耗和计算资源分配等问题并给出度量方法</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">同时考虑无人机可执行的任务类型以及任务对无人机的</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">CPU </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">和</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">GPU </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">要求</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">将该问题表述为混合整数非线性问题</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">。针对该问题提出一种基于深度强化学习的计算任务卸载算法</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">该算法基于改进双深度</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">Q </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">学习算法</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">在深度强化学习中利用深度神经网络找到无人机之间的映射</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">从状态空间中找到潜在的模式并估计最优动作</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">并使用无模型的</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">DRL </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">方法</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">使每个无人机根据局部观察快速做出卸载决策</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">。仿真结果表明</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">:</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">所提算法相比</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">LCGP </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">算法</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">平均卸载成本降低了</span>42. 8%</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">;</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">相比</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">DDPG </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">算法</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">能耗减少了</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">16%</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">;</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">相比</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">DDQN </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">算法</span> </span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;">,</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">任务执行延迟减少了</span>12. 9%</span> <span style="font-size: 9pt; font-family: &quot;Times New Roman&quot;;"> <span style="font-family: 宋体;">。</span> </span> </p> </span> <br /> 2025年01月30 00:00 2024年pre1 10 2097588 王 峰1,马星宇2,孟鹏帅2,赵 薇2,翟伟光2 基于数据优化多属性决策模型的山区公路线路优选方法 /oa/darticle.aspx?type=view&id=202401014 山区公路线路优选存在评价指标复杂、定性指标难量化、主观设定的指标常权权重与工程实际不完全相符的问题。本文基于技术性、经济性和安全性的原则,参考霍尔三维结构对山区线路的影响因素进行分析,并构建了评价指标体系,引入云模型理论量化定性评价指标,考虑评价指标实际状态对评价结果的影响,采用变权理论修正评价指标常权权重,实现了对数据的优化,并基于多属性决策模型(TOPSIS)提出了山区公路线路优选方法。将理论研究成果应用于玻利维亚艾尔西亚公路项目四号风险点的线路方案比选中。结果表明,云模型能有效解决定性指标的不确定性导致其难以量化的问题;三个路线方案的贴近度分别为:0.833、0.606、0.684,变权理论与传统常权权重相比在评估过程中更突出了极值指标对评价结果的影响,结果更贴合实际。 2025年01月30 00:00 2024年pre1 10 1942406 葛 巍1,彭朝晖2,徐 波2,刘 沐2,王亚伟2,张亚东1,王思危1