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AbstractECn this paperE-we investigate the dependence of the order of stress singularity at the tip of a crackE-which

terminates at the vertex of a tri-material wedgeE-on its geometry and the elastic constants. The stress field formulation

near the crack tip in a system of polar coordinates which origin at the singular point is derived in terms of complex

stress intensity factor K by using complex potentials. Several exampels prove that the solution of this paper is correct

and some useful conclusions are obtained.
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Introduction

In recent yearsE-the use of composite material has been
given considerable attention in structural applica-
tiong” =" The appearance of flaws or crackson the in-
terface between the two materials could reduce the
strength of the structure significantly. Several authors
have investigated the nature of the stress singularity at
the tip of a crack between dissimilar media. The order
of this singularitE which is r =2 for isotropic materi-
als£Cis dependent on both the crack geometry and the
material constants .

In present studyE-we first deal with the stress singulari-
ty at the tip of a crack on a interface of a tri-material
wedgefand derive the stress field formulations in com-
plex variable method and elasticity theory. Finally nu-

merical results are discussed.

1 Analytical Development

Consider a plane region sketched in Fig. 1E£-consisting
of three wedges with different material elastic con-
stants. Assume that a crack lays on a interface of two
wedges and terminates at the apex of the tri-material
wedge. A polar coordinate system is established as

Fig.1 showsE-distinguishing three regions with a sub-

script aE~where @ = 1£2£-and 3 respectively coore-
sponds to O < mf+ r<0<fP and f<0<0. In
the absence of body force and in terms of complex po-

tentials (2 zE@and wf zEE-the displacement u, and
stresses 6% E-¢§ are given by
2taft =208 Uy + iufEO= "B OFZEC-
2006 B0 of TEBYER
ot =0% + 0% = QEZE0 QF E0
VE E0 f&g”ﬁ@f» £71£0
o4 =0l — 0% = Q'E EQ Q'E ZEC
AVE L T BN
where z = re”£o, is rigidity modulusE-and k, = 3 -
4y, for plane strainf63 - v, E871 + v, EOfor plane

stressE-w, being posson’s ratio.

With the assumption of traction-free on the crack sur-
faces at 0 = + nE-the following boundray conditions
must be satisfiedE®

at = nfoh = 0 £»

at 0 = - wko% = 0 £»

at 0 = Ofo) = oifn' = u’E»
at 0 = BEo} = opfn® = wEn

Following the procedure used by Englanémmand C.C
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Hong and M. Sterf’**Ewe look for potentials of the

formE®

Y
X
g .
H v v,
Fig.1 Coordinate system with respect to the crack

tip in a tri — material wedge
" 2£0= A £~ of £0= B

where A, and B, are complex constants.

£73£0

Demanding the existence of nontrivial solutions satisfy-
ing the boundary condition§”*'leads to the characteris-
tic equationfE®
FALO=| d; | = 0 £7iEp = 1E6ECE~ £74£0

where

dy £ p3/ 101 E0k, + F*EQET] — 2 *TEEA

dip =diz = diy = dig = dy = dy =

doy = dps = O0E-

dis = dys = £7ks + 1887

dy £ 3/ 1 B0k + e 2P EQET] — e A EE
=1 - &£

dp =dy = ds = de = OEn

dyy £ 3/ 11,E0 k¥ 1 e 2AEES

dy £ A3/ p,E01 — 2 PEE

dys = £ k3™ 4 1£8dy = £72P - 1£8

dp =1 - e Eayy =£ 23/ 11,E01 — PEEA

dy £ 3/ 11,E0 ke 4 PAEES

dys = dgs = £ e7?P — 1£8-

dig = £ kye 2™ 4 158dgy = — ¥ 4 o 2A7E

dy, = £°1 = PEBdss = & _ 1£-

dsg =K 7* — 1£8dg; = £71 — e 2PEEA

de =™ _ e 2L = 2 _ 1 .
The eigenvalue A can be found by the solution of the e-
quatiorE 4£0

We notice that these eigenvalues occur in possitive and

£75£0

negative pairs. To represent a physically meaningful
singular stateE-Re A must lie between zero and one.
therefore the complex potential of the singular state are
then of the form

0, = A2 + aaz’if"

£76£0
so the equatiorE™ 1£Checomes the following formE®
2, = B kA E g e BAIEO
b e ¥ AT IEOEQ B o FA10 _
AN e BA-180 _ p oEirit0gp
ot = APEOA S | e a | opgrtacEn
bye ¥ AEOEYy XA 20 g, H1E0 £°7£0
AE"X - 2£@ A1 _ B o BTAr1E0EE,
0% = APETA A g e AR
b, e~5 A +180gg, X/{*E"aaeﬁ"“’g@ .
Ape$4-180 | B 62416050

With A given in equatiorE” 4E£E-the boundary condition

w, = B + b2 En

S}

of equationE 2EOmay be satisfied with the arbitary
choice of complex constants A if we have

A = Afa, = OEB, = - AAED, = Ay, E-

Ay = Ay,Ea, = AysEB, = Ay, = AysEV8ED

Az = Aysfus = 0EB; = AysEd; = Ayghn
where 3% i = 1£9-£8ECare the functions of the 3 angle
and the material elastic constanisE-given by
Vi = — e 2ATE
v2 =£UsE kyye — yse TVEC

1 ye — yye WEBRU/E ky + 1£6VEA

vy = e XM 9E "y — 1,£0e2P — 168U Lk, + 1EBYEA
~2iA8F

B

va == y6e " + y7 = ya2e” — yze
Ys = 5/6672'@3 + ¥y — y2he ? W — yixe?PEA £79£0
vo =£0.E ky + FEC (£71 — ATERY

E0/8 ks + 1EBVE-
¥7 == YeA £7
ve =£0p K1 — e ATECL £k, + e 2ATERY

£0,8 ks + 1£8Y.
From equation™ 7£E6 "8ECandE " 9EEwe have
o = o) = MFYETL - e ?A"EO at 0 = 0.£710£0
We define the complex stress intensity factor K = Ky

+ iKnby

oy = K £°11£0

0=0

and observe that the complex constant A in equation

£78£0and equationf 10£€can be expressed in terms of

the stress intensity factor as
K
A==

— £712£0
51 - 2hEE 12
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2 Numerical Results and Discussion

A. If we consider the material 2 and material 3 samef-
with arbitary 8 valueE~from equatiorE '4£Ccan have
A =12+ 22 = 1/2 - ie £~ £713£0
where ¢ = InRE 2nECER = 1+ ik £
11+ ok
From equations£ 8E£CanE"9EE-we have
Ay = Afa, = 0EB, = - AAED, = A/REA

Az = A3 = A/RE'Gz = a3 = OE_‘ £.14£©
BZ = B3 :—AA/RE'[)Z = b3 = ;1£_‘
where
Kk
A= £+ ree
This is just the case of the interface crack problem in

bimaterial bod%ﬂsm. Therefore the interface crack prob-

lem in bimaterial body can be consider as the special
case of this paper.

B. As an application of previously theoryE-the A roots
are calculated by numerical method in two casesf£ 1£0
11/ =0.58v, = v, = v3 = 0.3E8 = - 135%E7,/ 15
varing from 1 to 10£-the numerical results are sketched
in Fig. 285°2£0,,/ 11y = 0.5E8,/ E3 = 4Em, = v, = 15
=0.3£8 varing from 0° to — 180°Ethe numerical re-
sults are sketched in Fig.3.

Fig.2 Variation of | A | versus u,/pu; for f= - 150°

and p,/pu,=0.5
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Fig.3 Variation of | A | versus — f§ for u,/u,=0.5
and p,/ps3 =4
From Fig.2 and Fig.3£-we may have the following con-

clusionsE®

£71£0When the other factors are fixedE-the | A | de-

creases with the increasing of 15/ p3.

£72£0When 15/ 3 = 1Eathen |4 | = 0. 5E-this repre-
sents that the interface crack problem in bimaterial
body is the special case of this paper.

£73£0When the other conditions are fixedE-the | A |
varies largely with 8 angleE~which has the mininum
value 8= —90°.

£74ECThe | A | has same value with 8 = 0E-or B = -
180°E-which shows that the | A | relates p;/ /& if7 =
1£3£8-but the |z, | and | ;1.
C. Now we consider a tri-material plate Fig.4 simillar

£06EY

to the example with a center crack which is 2a

long. The composite plate is subjected to uniform ten-
sion oy. In case of L = W = 1£-a/W = 0.5E-y; =
0.35E-E,/ E5 varies from 1 to 10E-we calculated the
stress intensity factors K | £=K | EKjy and K,/ K , E-the

numerical results are showed in Table 1 and sketched

in Fig.5.
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Fig.4 Cracked composite plate
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Fig.5 Variation K,/ K, versus E,/E;
for cracked composite plate

where
Ky=1KI=+Kj + K}y £+ £715£0
Ko =V 1+ 4 6o/ / o/ 2865 £716£0
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TABLE 1 Stress intensity factors K | £X  £K, and Ref co
K,/ K . for different E,/E; eterences
Ey/ Ko/ £01£Y WILLIMS M L. The stress around a fault or crack in dis-
Ky Ky Ko Ko/ Ko U6EY - PP . .. e
Ey K% simillar medi£U JEY Bulletin of Seismological Society of
1 0.199475 0.039902 0.203423 0.901654 0.91 AmericaE1959£49£999 — 204 .
3 0.282581 0.045338 0.286195 1.268530 2 £02£Y ERDOGAN F. Stress distribution in bonded dissimilar ma-
5 0.373602 0.082354 0.382569 1.695700 2 terial with crack8UJEY] APPL. MECHE965£403 — 410.
7 0.523107 0.133515 0.539834 2.392761 j® £03£Y RICE J RESIH G C. Plane problem of cracks in dissimilar
10 0.638440 0.181774 0.663813 2.942286 2

From Fig. 5E-the following conclusions may be drawn
easilyE®

£71£0When E,/E, is the value 1£the plate consists of
two materialE-the Ky/ K, value 0.9017 approachs the
value 0.9F"much. This represents indirectly that the
solution of this paper is correct.

£ 72£CWhen E,/ E; increasesEthe K)/K,, increases al-
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