关于Fuzzy拓扑空间中的分离性

赵万忠

(数学力学系)

摘 要

本文在Fuzzy拓扑空间中定义文[1]、[2]不同的Tio(i=0、1、2、3、4)分离性概念,并证明 蕴含序列T4 \Rightarrow T2= \Rightarrow T2. 从而刻划了FUZZ α Y拓扑空间的分离性。

关键词: T_i (i = 0、1、2、3、4)分离性。

文中使用符号说明

fts Fuzzy拓扑空间

F 不分明

 $x_{\lambda} \leftarrow A$ $0 < \lambda \le A(x)$ 且仅当 $\lambda = 1$ 时取等号

A′ A的补集

一、予备知识

作为予备我们把本文要用的有关概念及结果写在这里。

设(X, J)为Fuzzy拓扑空间、

定义 $1 \cdot 1$ F集A叫F点 X_{λ} 的邻域,如果存在 $0 \in J$ 使 $x_{\lambda} \in O \subset A$ 、

定义 $1 \cdot 2$ 所有包含F集A的F闭集之交叫F集A的闭包,记作 A。即

 $\overline{A} = \bigcap \{F: F \in J' \ \underline{L}F \supset A \} J'$ 表全体闭集

定理 $I \cdot I \times_{\lambda} \in A$ 的充要条件是对 $x_{1-\lambda}$ 的任何开邻域0有 $O \notin A'$ 。

定义 $1 \cdot 3$ F点 \mathbf{x}_{λ} 叫F集A的聚点,如果对 $\mathbf{x}_{1-\lambda}$ 的任何开邻域 $\mathbf{0}$ 有 $\mathbf{y} \in \mathbf{X}$ 使 $\mathbf{0}$ (\mathbf{y})

+A(y) >1且当 $x_{\lambda} \in A$ 时 $y \neq x_{o}$

定义 $1 \cdot 4$ 称F集 $A^{c} = \bigcup \left\{ x_{\lambda} : x_{\lambda} \in A \wedge \sum_{i=1}^{n} A_{i} \right\}$ 为F集A的导集。

定理1·3 F集A是闭集 ←⇒A=A←⇒A ← CA。

定义 $1\cdot 5$ x_{λ} \leftarrow A叫A的内点,如果A是 x_{λ} 的邻域。称F集A $^{\circ}$ = \bigcup $\left\{x_{\lambda}: x_{\lambda}\in A$ 是A之内点 $\right\}$ 为A的内P

定理1 · 4 A · 是含于A的最大开集。

定义 $1\cdot 6$ \mathbf{x}_{λ} 的一个域族 \mathbf{B} 叫做它的邻域基,如果对 \mathbf{x}_{λ} 的每一邻域 \mathbf{U} ,存在 $\mathbf{B}\in\mathbf{B}$ 使 \mathbf{B} \subset \mathbf{U} 。

二、 T_0 与 T_1 空间

定义 $2 \cdot 1$ fts (X, J) 叫To空间,如果 $\forall x_{\lambda} \neq y_{\mu}$, $\exists O \in J$ 使或者 $x_{\lambda} \in O$ 且 $y_{\mu} \in O$,或者 $y_{\mu} \in O$ 且 $x_{\lambda} \in O$ 。

命题 2 · 1 若fts(X, J)是 T_0 空间,则 $\forall x \in X$ 及 $\lambda < \mu \in (0, 1]$, $\exists 0 \in J$ 使 $\lambda < 0$ (x) $\leq \mu$ 、

定理 $2 \cdot 1$ fts (X, J) 是 T_0 空间的充要条件是 V $x_{\lambda} \neq y_{\mu}$,或者 $x_{\lambda} \notin \overline{(y_{\mu})}$ 或者 $y_{\mu} \notin \overline{(x_{\lambda})}$ 其中 (x_{λ})表示仅在点 x 取值 λ 其余全取 0 值的 F 集。

证明 必要性: 设 $\mathbf{x}_{\lambda} \neq \mathbf{y}_{\mu} \Rightarrow \mathbf{x}_{1-\lambda} \neq \mathbf{y}_{1-\mu}$ 、由fts(X, J)是 \mathbf{T}_{0} 空间 $\Rightarrow \exists \mathbf{0}_{1} \in \mathbf{J}$ 使① $\mathbf{x}_{1-\lambda} \leftarrow \mathbf{0}_{1}$ 且 $\mathbf{y}_{1-\mu} \leftarrow \mathbf{0}_{1}$,或者② $\mathbf{y}_{1-\mu} \leftarrow \mathbf{0}_{1}$ 且 $\mathbf{x}_{1-\lambda} \leftarrow \mathbf{0}_{1}$ 。 由① $\Rightarrow \mathbf{x}_{1-\lambda} \leftarrow \mathbf{0}_{1}$ 且 $\mathbf{0}_{1} \subset \mathbf{y}_{\mu}$)' $\Rightarrow \mathbf{x}_{\lambda} \notin \overline{(\mathbf{y}_{\mu})}$ 。由② $\Rightarrow \mathbf{y}_{\mu} \exists \overline{(\mathbf{x}_{\lambda})}$ 、

充分性设 $\mathbf{x}_{\lambda} \neq \mathbf{y}_{\mu} \Rightarrow \mathbf{x}_{1-\lambda} \neq \mathbf{y}_{1-\mu}$, 由假设,若 $\mathbf{x}_{1-\lambda} \notin (\mathbf{y}_{1-\mu}) \Rightarrow \Box O \in J \oplus \mathbf{X}_{\lambda}$ $\leftrightarrow O \subset (\mathbf{y}_{1-\mu})'$, 即 $\mathbf{x}_{\lambda} \leftrightarrow O \to \mathbf{f}$ ts (\mathbf{X}, \mathbf{J}) 为 \mathbf{T}_{0} 空间。若 $\mathbf{y}_{1-\mu} \notin (\overline{\mathbf{x}_{1-\lambda}})$ 情况相同,证完。

系 设fts(X, J)为 T_0 空间,则 $\forall x \in X$ 及 $\lambda < \mu \in (0, 1)$, $x_{\mu} \notin (x_{\lambda})$

引理 $2 \cdot 1$ 设 tts(X, J) 为 T_0 空间,则 $\forall x \in X$ 及 $\rho \in [0, 1]$, $\exists O \in J$ 使 $O(x) = \rho_0$

证明 若 $\rho = 0$,取 $O = \phi$ 即可,若 $0 < \rho \leqslant 1$,取 $\rho_n = (1 - \frac{1}{n}) \rho (n = 1, 2, 3 \cdots$ \cdots)、则 $\rho_n < \rho_{n+1}$ 且 $\rho_n \to \rho (n \to \infty)$,于是, $\forall x \in 8$,由命题 $2 \cdot 1 \Rightarrow \exists O_n \in J \notin \rho_n < O_n$

 $(\mathbf{x}) \leq \rho_{n+1}$, 令 $O = \bigcup_{n=1}^{\infty} O_n \in J$, 则 $O(\mathbf{x}) = \rho$, 证完。

定理 2 · 2 fts (X, J为T。空间的充票条件是分 $x_{\lambda} \neq y_{a}$, $\exists O \in J$ 使或 $\lambda < O(x)$ 且 $\mu = O(y)$ 或者 $\mu < O(y)$ 且 $\lambda = O(x)$ 。

证明 充分性显然。今证必要性。设 $x_{\lambda}\neq y_{\mu}$,由fts(X,J)为 T_{0} 空间 \Rightarrow $\exists O_{1}$

 $\in J$ 使或者① $\lambda < O_1(x)$ 且 $\mu > O_1(y)$,或者② $\mu < O_1(y)$ 且 $\lambda > O_1(x)$ 。若①,由 引理 $2 \cdot 1 \Rightarrow \exists O_2 \in J$ 使 $O_2(y) = \mu$,取 $O = O_1 \bigcup O_2 \bigcup O_2 \bigcup O_3 \cup S = \mu$ 。若②有相同的情形。证完。

定义 2 · 2 · $\{ts(8, J) \text{叫} T_1 \text{空间, 如果} \forall x_{\lambda} \neq y_{\mu} , 若①x \neq y_{\mu} , \exists O_1, O_2 \in J \}$ 使 $X_{\lambda} \in O_1 \text{且} y_{\mu} \in O_1$,同时 $y_{\mu} \in O_2 \text{且} x_{\lambda} \in O_2$,若②x = y, $\lambda < \mu$, $\exists \in J \notin \lambda < O(x)$ $\leq \mu$ 。

命题2·2 若fts(∞, J)是 T_1 空间,则它也必为 T_0 空间。

定理 2・3 fts(x, J) 为 T_1 空间的充要 条件为① $\forall x \neq y$ 及 λ , $\mu \in (0, 1]$, 则 X $\lambda \notin (y_{\mu})$ 且 $y_{\mu} \notin (x_{\lambda})$; ② $\forall x \in x$ 及 $\lambda < \mu \in (0, 1]$, $x_{\mu} \notin (x_{\lambda})$ 定理 2・4 fts(8, J) 为 T_1 空间的充要条件为 $\forall x_{\lambda}$, (x_{λ}) 为F 闭集

证明 必要性、 $\forall x \neq y \beta \mu$,由定理 $2 \cdot 3 y_{\mu} \notin (x_{\lambda})$ 。 $\forall \mu > \lambda$,由定理 $2 \cdot 3 y_{\mu} \notin (x_{\lambda})$ 。 $\forall \mu > \lambda$,由定理 $2 \cdot 3 y_{\mu} \notin (x_{\lambda})$ 。 $\forall \mu > \lambda$,由定理 $2 \cdot 3 y_{\mu} \notin (x_{\lambda})$ 。 $\forall \mu > \lambda$,由定理 $2 \cdot 3 y_{\mu} \notin (x_{\lambda})$ 。

充分性 $\forall (\mathbf{x}_{\lambda}) \in J' \Rightarrow (\mathbf{x}_{\lambda}) = (\mathbf{x}_{\lambda}) \Rightarrow \mathbb{I} \forall \mu > \lambda, \mathbf{x}_{\mu} \in (\mathbf{x}_{\lambda}) = (\mathbf{x}_{\lambda}), ② \forall \mathbf{x} \neq \mathbf{y}, \mathbf{y}_{\mu} \notin (\mathbf{x}_{\lambda}) = (\mathbf{x}_{\lambda}) \mathbf{1} \mathbf{x}_{\lambda} \notin (\mathbf{y}_{\mu}) = (\mathbf{y}_{\mu}), \mathbf{u} \in \mathbb{R}$ 2・3 $\Rightarrow \mathrm{Its}(\mathbf{X}, \mathbf{J}) \Rightarrow \mathrm{T}_{1}$ 空间。 证完。
系 $\mathrm{Its}(\mathbf{X}, \mathbf{J}) \Rightarrow \mathrm{T}_{1}$ 空间的充要条件是 $\forall \mathbf{x}_{\lambda} \in \mathrm{T}_{\mu}$ $\Rightarrow \mathrm{T}_{1}$

定理 $2 \cdot 5$ fts(X, J) 为 T_1 空间的充要条件为 $\forall x_{\lambda}$, $B=\bigcap$ $\{U: U \not\in x_{\lambda} \text{ 的邻} \}$ $\{u: U \not\in x_{\lambda}\}$ 。

证明、必要性、若不然① $\exists x \neq y$ 使 $y_{\mu} \leftarrow B \Rightarrow y_{\mu} \leftarrow x_{\lambda}$ 的每一邻域。与fts(X,J)是 T_1 空间矛盾。或② $\exists \mu > \lambda$ 使 $x_{\mu} \leftarrow B \Rightarrow x_{\mu} \leftarrow x_{\lambda}$ 的每一邻域,与fts(X,J)是 T_1 空间矛盾。

充分性、若不然,① $\exists y \neq x$, λ , $\mu \in (0, 1]$ 使i) $y_{\mu} \leftarrow x_{\lambda}$ 的每一邻域 $\Rightarrow y_{\mu}$ $\leftarrow B = (x_{\lambda})$ 矛盾。或ii)、 $x_{\lambda} \leftarrow y_{\mu}$ 的每一邻域 $\Rightarrow x_{\lambda} \leftarrow \bigcap \left\{ U : U \not \in y_{\mu} \text{ 的邻域} \right\}$ $= (y_{\mu})$ 矛盾,② $\exists x_{\lambda} \ \, \lambda \neq x_{\mu} \rightarrow x_{\lambda}$ 的每一邻域 $\Rightarrow x_{\mu} \leftarrow B = (x_{\lambda})$ 矛盾。证完。

定理 $2 \cdot 6$ 设 δ 设 δ 设 δ 设 δ 设 δ 化 δ δ 化 δ

证明,必要性,若不然。 曰满足 $x_{1-\lambda} \leftarrow O_1$ 的 $O_1 \in J$ 及X的有限子 集 $\left\{x^i : i = 2, 3, \dots n\right\}$ 使, $O_1(x^i) + A(x^i) > 1$ ($i = 2, 3, \dots n$) 而 $\forall y \neq x^i$ ($i = 2, 3, \dots n$) $O_1(y) + A(y) \le 1$

(一) 当 x_λ ∈ A时,不妨设xⁱ(i=2,3,…n)异于x,取λi使λi≥A(xⁱ)>
 O₁'(xⁱ),(i=2,3,…n),由定理2・4系,∃O_i∈J使Oi=(xi_{λi})'(i=2,

3, …n) $\Rightarrow x_{1-\lambda} \leftarrow O_i$ (i = 2, 3, …n) $\Rightarrow O_i \in J$, 则 $x_{1-\lambda} \leftarrow O$ 且当 $y \neq x^i$ i = 1 (i = 2, 3, …n) 时, $O(y) + A(y) \leq O_1(y) + A(y) \leq 1$ 、当 $y = x^i$ 时, $O(x^i) + A(x^i) \leq O_i(x^i) + A(x^i) = 1 - \lambda i + A(x^i) \leq 1$ 、 $\Rightarrow x_{\lambda}$ 不是F集A的聚点。 矛盾。

(二)当 x_{λ} \notin A时,若 $O_1(x)$ + A(x) \leq 1,证明同(-) 今设 $x_n = x$ 、 $\therefore \lambda > A$ (x), 取 δ 使 $\lambda > \delta > A(x) = A(x^n) > O_1'(x)$ 、由定理 $2 \cdot 4$ 系,司 $O_2 \in J$ 使 $O_2 = (x_{\delta})' \Rightarrow x_{1-\lambda} \leftarrow O_2$,令 $O = O_1 \cap O_2$,则 $x_{1-\lambda} \leftarrow O \in J$ 且 $\forall y \neq x = x^n$, $O(y) = O_1$ (y)。而 $O(x) = 1 - \delta \Rightarrow O(x) + A(x) = 1 - \delta + A(x) \leq 1$ 、于是化为情形(-)。

充分性显然。 证完。

定理 $2 \cdot 7$ 、设fts(X, J)为 T_1 空间,则任何F集的导集是F闭集

证明: 设A为F集。欲证A^d \in J',只须证A^d的聚点也是A的聚点。设 \mathbf{x}_{λ} 是A^d 的 聚 点 $\Rightarrow \forall \mathbf{x}_{1-\lambda} \leftarrow \mathsf{O} \in \mathsf{J}$ 由定理 $\mathbf{2} \cdot \mathbf{6} \Rightarrow \exists \mathbf{y} \in \mathsf{X}$ 使 $\mathsf{O}(\mathbf{y}) + \mathsf{A}^{\mathsf{d}}(\mathbf{y}) > \mathbf{1}$ 。取 μ 使 $\mathsf{O}'(\mathbf{y}) < \mu \leq \mathsf{A}^{\mathsf{d}}(\mathbf{y})$ 且 \mathbf{y}_{μ} 是A 之聚点。由 $\mathbf{y}_{1-\mu} \leftarrow \mathsf{O}$ 及定理 $\mathbf{2} \cdot \mathbf{6} \Rightarrow \exists \mathsf{X}$ 的无限 子集 $\{\mathbf{x}^{\mathsf{e}}: \boldsymbol{\times} \in \mathsf{M}\}$ 使 $\forall \alpha \in \mathsf{M}$ 、 $\mathsf{O}(\mathbf{x}^{\mathsf{e}}) + \mathsf{A}(\mathbf{x}^{\mathsf{e}}) > \mathbf{1}$,再由定理 $\mathbf{2} \cdot \mathbf{6} \in \mathsf{A}$,是A之聚点。证完。

三、T2字 间

定义 $3 \cdot 1$ 、fts(X, J) 叫 T_2 空间,如果,① $\forall x \neq y$ 及 λ , $\mu \in (0, 1]$, $\exists O_1$, $O_1 \in J$ 使 $x_\lambda \leftarrow O_1 y_\mu \leftarrow O_2$ 、且 $\forall z \in X$, $O_1(z) + O_2(z) \leq 1$ 、(简记为 $O_1 + O_2 \leq 1$),② $\forall x \in X$ 及 $\lambda < \mu \in (0, 1]$, $\exists O \in J$ 使 $\lambda < O(x) \leq \mu$ 。

命題3、1 若fts(X, J)是 T_2 空间,则它必为 T_1 空间。

 μ <O(x)< $1-\lambda$, 即 $x_{1-\mu}$ < $O\subset (x_{\lambda})' \Rightarrow x_{\mu} \notin (x_{\lambda})$, 由定理 2、 $3 \Rightarrow fts$ (X, J)为 T_1 空间。证完。

定义3 · 2、F点列($x_{\lambda n}^n$: $n \in N$)叫做终在F集 Δ 内,如果 $\exists n_0$ 使 $n > n_0$ 时 $x_{\lambda n}^n \leftarrow A$

定义3・3 fts(X, J)中F点列($x_{\lambda n}^n$: $n \in N$)叫做常常不小 于 $\alpha \in (0.1]$, 如果 $\forall n$, $\exists m > n$, 使 $\lambda_m \ge \alpha$ 。

定义3・4 fts(X, J)中F 点列($x_{\lambda n}^n: n \in N$)叫做收敛于F点 x_{λ} ,如果F 点列($x_{\lambda n}^n: n \in N$)终在 x_{λ} 的任何开邻域内。

命題3・1 设F点列($x_{\lambda n}^n$: $n \in N$) 收敛于 x_{λ} , 则 $\forall \mu \geq \lambda$, 该F点列也收敛于 x_{μ}

定理 $3 \cdot 1$ 设fts(X, I) 为 T_2 空间,则常常不小于 $\frac{1}{2}$ 的每一F 点列不能同时收敛于 承点不同的 = F 点。

证明、设不然,则有常常不小 $\frac{1}{2}$ 的F点列($\mathbf{x}_{\lambda n}^{n}$: $\mathbf{n} \in \mathbb{N}$)同时收敛于 \mathbf{x}_{λ} 及 \mathbf{y}_{μ} 且 $\mathbf{x} \neq$

y。 由收敛于 x_{λ} , $\forall x_{\lambda} \leftarrow O_1 \in J$, $\exists n_1 \notin n > n_1 \text{时} x_{\lambda n}^n \leftarrow O_1$, 由收敛于 y_{μ} , $\forall y_{\mu} \leftarrow O_2$

 $\in J$, $\exists n_1 \notin n > n_2 \text{时}$, $x_{\lambda n}^n \leftarrow O_1 \Rightarrow n > n_0 = \max \left\{ n_1, n_2 \right\}$ 时,同时有 $x_{\lambda n}^n \leftarrow O_1 \mathbf{L} x_{\lambda n}^{n_n}$ 个 O_2 、由($x_{\lambda n}^n$: $n \in \mathbb{N}$)常常不小于 $\frac{1}{2} \Rightarrow \exists n_3 > n_0 \notin \lambda_{n_3} \geqslant \frac{1}{2} \Rightarrow O_1$ ($x_{\lambda n_3}^{n_3}$)+

($x_{\lambda_{n3}}^{n_3}$)+O₂($x_{\lambda_{n3}}^{n_3} \ge z\lambda_{n3} \ge 1$ 。与fts(X, J)为T₂空间矛盾。证完。

定理 $3 \cdot 2$ 若 fts (8, J) 为 T。空间,且其中每一 F 点列不同时 收 敛于 承点 不同的 = F 点,则 fts (X, J) 是 T₂ 空间。

证明 由f ts(X, J)是T。空间 $\Rightarrow \forall x \in X \nearrow \lambda < \mu \in (0, 1]$, $\exists O \in J \not \in \lambda < O$ $(x) \leq \mu$;

其次若 $\exists x_{\lambda}$ 、 y_{μ} ($x \neq y$)使 $\forall x_{\lambda} \leftarrow O_1 \in J$ 及 $\forall y_{\mu} \leftarrow O_2 \in J$ $\exists z \in X$,满足 O_1 (z) $+ O_2$ (z) > 1 ,取 ρ 使 $0 < \rho < \min$ { O^s (z) ${}_1O_2$ (z) } 、则 $z_{\rho} \leftarrow O_1$ 且 $z_{\rho} \leftarrow O_2$ 令 $\rho_a = (1 - \frac{1}{n}) \rho < \rho_n = 1$, $2 \cdots$ 则 $z_{\rho_a} \leftarrow O_1$ 且 $z_{\rho_a} \leftarrow O_2$ ($n = 1, 2, \cdots$) 显然 F 点列 (z_{ρ_a} : $n \in N$) 同时 收敛 $\exists x_{\lambda}$ 及 y_{μ} ($x \neq y$) 与 假设矛盾。 故 $\forall x_{\lambda} \neq y_{\mu}$ ($x \neq y$), $\exists O_1$ 、 O_2 $\in J$ 使 $x_{\lambda} \leftarrow O_1$ 、 $y_{\mu} \leftarrow O_2$ 且 $O_1 + O_2 \leq 1$

综上知fts(X, J)为T,空间。证完

命题 $3 \cdot 2$ 在 T_1 与 T_2 空间中,(x_{λ})的聚点只能呈 x_{μ} ($\mu > \lambda$)型。

证明 当 $\lambda \geqslant \mu$ 时, $x_{\mu} \notin (x_{\lambda})$ 6。而 $\forall y \neq x$,由定理 $2 \cdot 3$, $y_{\mu} \notin (x_{\lambda}) \Rightarrow y_{\mu} \notin (x_{\lambda})$ 6。故 (x_{λ}) 的聚点只能呈 $x_{\mu} (\mu > \lambda)$ 型。证完。

四、T3与T4空间

定义 $4 \cdot 1$ fts (X, J) 叫正则 空间,如果, x_{λ} 及 $B \in J'$ 满足 $x_{\lambda} \leftarrow B'$ 、则 $\exists O_1$ 、 $O_2 \in J$ 使 $x_{\lambda} \leftarrow O_1$, $B < O_2$ 且 $O_1 + O_2 \le 1$ 。 这里 $B < O_2$ 表 示 $\forall x \in X$, $B(x) \le O_2(x)$ 、且仅当 $B(x) = O_2(x) = 1$ 时才取等号。

定理 4 • 1 fts (X, J) 是正则空间的 充要条件是 $\forall x_{\lambda}$ 及 x_{λ} 的任何开邻域O, \exists $O_1 \in J \notin x_{\lambda} \leftarrow O_1 \subset \overline{O_1} \subset O$ 。

证明、必要性、 $\forall x_{\lambda} \ \Delta x_{\lambda} \leftarrow O \in J \Rightarrow x_{\lambda} \leftarrow (O')'$ 、由 $O' \in J'$ 及定义 $4 \cdot 1 \stackrel{\leftarrow}{\Rightarrow} \exists$ $O_1, O_2 \in J \oplus x_{\lambda} \leftarrow O_1, O' < O_2 \exists O_1 + O_2 \leqslant 1, \Rightarrow O_1 \subset O_2' \Rightarrow \overline{O_1} \subset \overline{O_2'} = O_2' < O_2$

充分性、设 x_{λ} 及 $B \in J'$ 满足 $x_{\lambda} \leftarrow B'$ 。由 $B' \in J$ 及假设 \Rightarrow $\exists O_1 \in J$ 使 $x_{\lambda} \leftarrow O_1 \subset O_2$ $< B' \Rightarrow B < \overline{O_1}' \in J$ 、 $\diamond O_2 = \overline{O_1}' \Rightarrow O_1 + O_2 \leq 1$ 。 $\Rightarrow fts(X, J)$ 为正则空间。证完。

定义 $4 \cdot 2$ fts (X, J) 叫 T_3 空间, 如果 fts (X, J) 是正则空间且是 T_1 空间。

命题4•1 若fts(X, J)是T₃空间,则它必是T₂空间。

证明 $\forall x_{\lambda} \neq y_{\mu}$ ①若 $x \neq y$, 由fts(8, J)是 T_1 空间 \Rightarrow (x_{λ}) \in J' \Rightarrow $y_{\mu} \notin$ (x_{λ}) \Rightarrow $y_{\mu} \leftarrow$ (x_{λ})'。由fts(X, J)是正则空间 \Rightarrow $\exists O_1, O_2 \in J$ 使 $y_{\mu} \leftarrow O_1$, (x_{λ}) < O_2 且 $O_1 + O_2 \le 1$ 。②若x = y, $\lambda < \mu$,由fts(8, J)是 T_1 空间 $\Rightarrow \exists O \in J$ 使 $\lambda < O(x) \le \mu$ 。综合①与②便得fts(X, J)是 T_2 空间。证完。

定义 4 · 3 fts (8, J) 叫正规空间,如果 B_1 、 $B_2 \in I'$ 满足 $B_1 < B_2'$,则曰 O_1 、 $O_2 \in J$ 使 $B_1 < O_4$ 、 $B_2 < O_2$ 且 $O_1 + O_2 \le 1$ 。

定理 4 · 2、fts (X, J) 是正规空间的充要条件 是若O \in J, B \in J'满足B < O ,则 \exists O \in J \notin B < O \in C \bigcirc C \bigcirc

证明、必要性,设 $O \in J$, $B \in J'$ 使B < O = (O')'。由 $O' \in J'$ 及定义A、 $3 \Rightarrow \exists O_1$ 、 $O_2 \in J$ 使 $B < O_1$, $O' < O_2$ 且 $O_1 + O_2 \leqslant 1$ 、 $\Rightarrow O_1 \subset O_2' \Rightarrow O_1 \subset O_2' = O_2' < O$ 。 充分性 设 $B \cdot$ 、 $B_2 \in J'$ 使 $B_1 < B_2'$,由 $B_2' \in J$ 及假设 $\Rightarrow \exists O_1 \in J$ 使 $B_1 < O_1 \subset O_1 < B_2'$ $\Rightarrow B_2 < O_1'$ 、取 $O_2 = \overline{O_1}' \in J$,则 $O_1 + O_2 \leqslant 1 \Rightarrow fts(X, J)$ 为正规空间。证完。

定义 4 、4 、fts (X , J) 叫 T_4 空间,如果它既是正规空间又是 T_1 空间。

命题 4、 2 若fts (X, J) 是T₄空间,则它必是T₃空间。

定义 4、5 设A、U是fts(X, 1)中F集。

U叫做A的邻域,如果 $\exists O \in J$ 使A $< O \subset U$.A的所有邻域组成它的邻域系记作 U_A , A的一个邻域族 α ($\subset U_A$)叫做它的邻域基,如果 $\forall U \in U_A$, $\exists V \in \alpha$ 使 $V \subset U$.

证明、必要性、设 x_{λ} 为F点, $B \in Ux_{\lambda} \Rightarrow \exists O \in J$ 使 $x_{\lambda} \leftarrow O \subset B$ 、由定理·4、 $1 \Rightarrow \exists O_1 \in J$ 使 $x_{\lambda} \leftarrow O_1 \subset O \subset B$ 、这说明 x_{λ} 的闭邻域族是它的邻域基。

充分性、 $\forall x_{\lambda}$ 及 $\forall x_{\lambda}$ \leftarrow $O \in J \Rightarrow O \in U$ x_{λ} 由假设 $\Rightarrow \exists B \in J'$ 使 $B \in U$ x_{λ} 且B < O, \Rightarrow $x_{\lambda} \leftarrow B^{\circ}$ 且 $B^{\circ} \subset B < O$, 由定理 4、1 fts (X, J)为正则空间。证完。

定理 4、 4、 fts(X, J) 为正规空间的充要条件是F闭集的闭邻域族是该F闭集 的 邻域基•

证明、必要性、设 $B \in J'$, $A \in U_B \Rightarrow B < A^{\circ}$ 由定理 $A \cdot 2 \Rightarrow \exists O \in J \notin B < O \subset \overline{O} < A^{\circ} \subset A$ 、这说明B的闭邻域族是它的邻域基。

充分性、设 $O \in J$, $B \in J'$ 使 $B < O \Rightarrow O \in U_B$ 、由假设 $\Rightarrow \exists A \in J'$ 使 $A \in U_B \perp A < O \Rightarrow B$ 《A 》 且 \overline{A} 。由定理 4、 2 \Rightarrow fts (X, J)为正规空间。证完。

参考 文献

- (1)蒲保明 刘应明 不分明拓扑学工(四川大学学报,自然科学版,1977年第1期
- (2) 转继光 不分明拓扑空间的分离公理与紧性。(四川大学学报)

ON SEPARATION PROPERTIES IN FUZZY TOPOLOGY SPACE

Zhao Wanzhong

(Department of Mathematics and Dynamics)

Abstract

In this paper, We shall define the Ti(i=0, 1, 2, 3, 4) Separation properties in fuzzy topology space as distinguished from [1], [2], and show the inclusion sequence $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$. From this, the separation properties in fuzzy topology space is characterized. keywords: T: (i=0, 1, 2, 3, 4) separation properties.