桩基承台三维光弹性应力分析

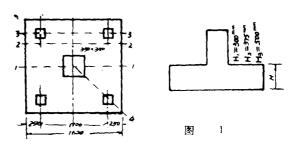
王 文 勇*

(力学教研室)

提 要

本文应用三维光弹性试验方法,将冻结应力后的环氧树脂模型切片,放入全场斜射仪中,进行 正 射、斜射,测得各切片的等差线和等倾线。采用切力差法计算应力,确定了不同厚度桩基承台上、下边缘最大拉应力、最大压应力区域及其大小,计算了截面内部的应力 σ_x 、 σ_y 、 τ_{xy} 、 σ_1 、 σ_2 、的分布规律,同时给出了最大切应力传递角度和主应力迹线。

一、概 述


桩基承台是将上部荷载传给桩基并由桩基传给地基的重要结构。承台设计得合理与否,直接影响上部整体结构的安全。但是,迄今为止,国内外对于承台计算方法不一。例如:有人将四支点桩基承台简化为以桩基为固定端的悬臂梁计算,也有人将桩基力平均分配在四支点不考虑中间柱影响,简化为一般梁计算。以上计算方法经过简化,显然都具有一定的近似性。由于计算方法不同,其结果往往相差甚远。因此有必要对承台的合理设计进行模型试验研究。

本文利用三维光弹试验方法给出不同厚度承台的应力分布规律,主应力迹线图和最大剪应力传递角度。

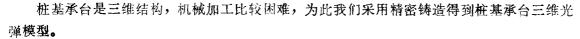
二、模型试验

(一) 试验条件

- 1. 模型比例1:20
- 2. 要求观测

- ① 不同厚度承台(图1所示)1-1,-2,3-3,4-4截面上、下边缘应分布规律。
- - ③ 切片1-1上、下边缘σz分布规律和主应力迹线图。
 - 参加实验工作的还有李连中同志

- (4) 确定1-1,4-4切片内最大剪应力传递角度。
- 3. 荷载


当承台厚度H₁=300mm时,设计荷载P₁=80吨。

当承台厚度 $H_2 = 375$ mm时,设计荷载 $P_2 = 115$ 吨。

当承台厚度 $H_2 = 500$ mm时,设计荷载 $P_s = 168$ 吨。

(二)试验方法

1. 模型制作

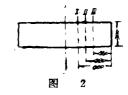
精密铸造模型的阴模采用室温硫化硅橡胶,硫化硅橡胶可以在20℃条件下,加入 3%的交链剂和1.5%的触媒剂一次浇注而成。这种模具的收缩率一般在1%以下,能满足模型尺寸准确度的要求。而且它还有良好的弹性,不会在环氧树脂模型时因收缩而产生内应力,这种硅橡胶与环氧树脂不粘连,是目前制造三维光弹模型理想的脱模剂。

我们采用水泥砂浆做阴模外壳,内衬3—5mm厚的硅橡胶做阴模里衬。这种水 泥 **硅** 橡胶阴模的优点是硅橡胶层薄,变形小,而且又有足够的弹性。在环氧树脂中混合物聚合成型时,能自由收缩而不会引起不可消除的残余应力。同时硅橡胶和水泥壳粘结很牢,可以保证硅橡胶里衬尺寸的准确性。

水泥壳硅橡胶阴模制做的简单程序如下:

用有机玻璃做成尺寸准确的三维桩基承台阳模,再用木料做成形状与有机玻璃阳模相似,各方向尺寸均大3~5 mm的木模,用此木模翻制水泥壳阴模。水泥壳阴模分上下两半,在模壳侧面刻上分缝定位线,控制位置。然后射有机玻璃阳模用小块固化硅橡胶支承在水泥壳阴模中,各方向保持3~5 mm缝隙,用灌压法将107*和106* 硅橡胶混合物填充到此缝隙中。经过固化成形后即可拆模。在恒温箱内40℃,6~8小时可完全固化。实践证明,用这种水泥壳硅橡胶阴模制成的光弹模型尺寸准确,表面光洁度好,初应力小,比较经济,而且此阴模可以重复使用。

水泥壳阴模的灰砂比为1:1,拌适量水份,使拌合物可塑而不流动。自然干燥后,放入60℃恒温箱中烘烤—天即可使用。


浇注模型材料采用的是618*环氧树脂和顺丁烯二酸酐,重量比为环氧树脂:顺丁烯二酸 酐=100:35,经过50℃恒温一次固化成型,脱模后再在油浴中进行二次固化 ,二次固化后 的模型即可使用。

一次固化时间温度曲线见图3 , 二次固化时间温度曲线见图 4 。

2. 加载冻结

对模型加载必须荷载相似,即模型荷载与原型荷载性质相同,大小成比例。在选择模型 荷载比例时,应考虑模型材料的光学、力学性能在比例极限内获得足够的观测条纹,保证实 验精度,同时又不使模型产生过大的变型而扭曲。

本实验中,作用在模型上的荷载为中间桩基上垂直受压,使用维卡仪在其上端直接加砝码,就可以保证垂直加力。材料冻结条纹值,应用园盘对径受压做为标准试件,与模型同

时放入**烘**箱冻结,材料冻结条纹值经过计算是: 「r=0.35公斤/厘米·条。模型冻洁应力的时间温度曲线见图5。

3. 观测与计算

三维光弹性试验优点在于可以解决实际工程结构中内部应力,理论难以计算的问题。实际构件中每一点应力,有六个应力量分分x、分x、不xx、不xx、决定。该桩基承台属于四支点厚板结构,目前在理论计算上还没有精确解答。我们通过"冻结"方法将应力固结在三维光弹模型内,然后对要研究的截面进行切片,把切片放入全场斜射仪中进行一次正射和两次斜射,得出要计算的应力光图。见图 6。

对模型沿Z轴方向一次正射,得到:

$$\sigma_{x} = \sigma_{z} = \frac{n_{z}f}{d} \cos \theta_{xy}$$
 (1)

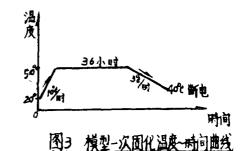
$$\tau_{x7} = \frac{n_z f}{2 d} \sin 2\theta_{x7}$$
 (2)

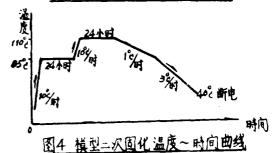
式中: n, --z方向正射时条纹级数。

f ——材料条纹级数。

d ---切片厚度。

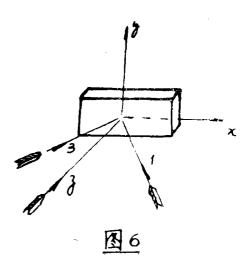
 θ_{xy} ——是xy平面内次主应力 σ_1 与


x轴夹角。


在xz平面内,沿1方向斜射,得到: $(\sigma_x - \sigma_y)\cos^2\varphi - (\sigma_y - \sigma_z)\sin^2\varphi + \tau_{zx}\sin^2\varphi$

$$= \frac{n_{x} f \cos \varphi}{d} \cos 2\theta_{xy} \qquad (3)$$

$$\tau_{xy}\cos\varphi - \tau_{yy}\sin\varphi = \frac{n_{xy}f\cos\varphi}{2d_{\mathbf{k}}}\sin 2\theta_{xy}$$
(4)


式中 φ ——斜射方向与z轴夹角。 在xz平面内沿 3 方向斜射,得到: ($\sigma_x - \sigma_y$) $\cos^2 \varphi - (\sigma_1 - \sigma_z)\sin^2 \varphi$ + $\tau_{zx}\sin^2 \varphi = \frac{n_x}{2}\sin^2 \varphi\cos^2 \cos^2 \theta_x$ ",

温度 200 增温 1小时 By 75时 40°c 新电 20°

图5 模型冻结应力温度~时间曲线

(5)

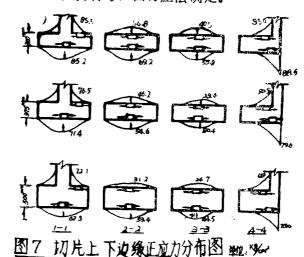
$$\tau_{xy}\cos\varphi + \tau_{yz}\sin\varphi = \frac{n_{x''y}i\cos\varphi}{2d}\sin 2\theta_{x''y}$$
 (6)

以上六个方程中有五个是独立的, 再加上一个补充方程

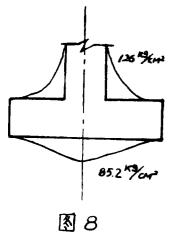
$$(\sigma_{\mathbf{x}})_{\mathbf{k}} = (\sigma_{\mathbf{x}})_{\mathbf{0}} - \sum_{\mathbf{0}}^{\mathbf{k}} \frac{\Delta \tau_{\mathbf{y}_{\mathbf{x}}}}{\Delta \mathbf{y}} \Delta \mathbf{x} - \sum_{\mathbf{0}}^{\mathbf{k}} \frac{\Delta \tau_{\mathbf{z}_{\mathbf{x}}}}{\Delta \mathbf{z}} \Delta \mathbf{x}$$

就可以全部得出所要求的六个应力分量。

将承台切片放入全场斜射仪中进行一次正射,可得出该切片的等色线图。由此图可计算出各切片上下边缘的正应力,其应力分布图见图7,应力符号,由钉压法确定。


对切片沿45°方向一次斜射,由(3) 式中可知

$$\sigma_{z} = \frac{1}{\sin^{2} 45^{\circ}} \left(\frac{n_{xy} f \cos 45^{\circ}}{2 d} \cos 2\theta_{xy} + \tau_{zx} \sin^{2} 45^{\circ} + \right)$$


$$\sigma_y \sin^2 45^\circ - (\sigma_x - \sigma_y) \cos^2 45^\circ$$

因为,1-1切片上下边缘 $\sigma_r = 0$, $\tau_x = 0$ 所以,

$$\sigma_z = \frac{1}{\sin^2 45^{\circ}} \left(\frac{n_x''_y f \cos 45^{\circ}}{2 d} \cos 2\theta_x' \right).$$

 $-\sigma,\cos^245^{\bullet}$]可以得到切片1—1上下边缘 σ_z 应力分布图(见图**8)。**

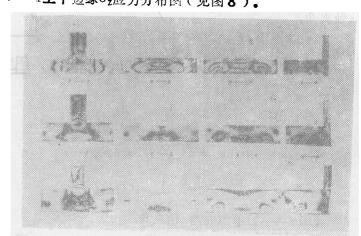


图9 集合线图

将切片放入全场斜射仪中,沿z 轴方向,对切片I-I位置一次正射,得到 $\tau_{xx} = \frac{nf}{2d} \sin 2\theta_{xx}$,

即为垂直切片底I--I线上的切应力,其等色线见图 ${f 9}$,等倾线见图 ${f 10}_{f ullet}$

将切片绕Z轴转30°,仍然沿Z轴方向对切片I—1′线正射,得到:

 $(\tau_{xy})_{so}$ ° = $\frac{nf}{2d}$ $\sin 2(\theta_{xz} + 30^\circ)$,即为与切片底夹 角 30° I—I′线上的切应力。

将切片绕z轴转45°,仍然沿z轴方向对切片I一II''线正射得到;

 $(\tau_{xy})_{45}$ = $\frac{n_z f}{2d} \sin 2(\theta_{xy} + 45^{\circ})$, 即为与底边夹角 $45^{\circ}I$ —II''线上的切应力。 切应力分布图见图11。

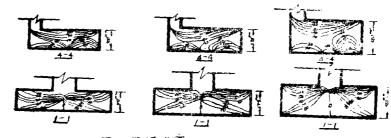
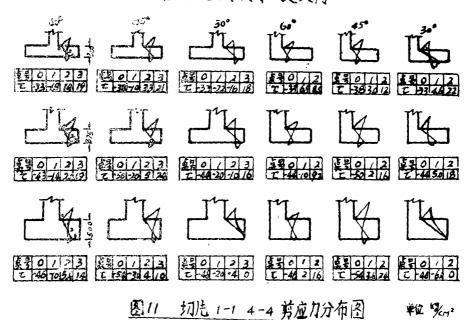



图10 等倾线图

各切片截面与底边交角

 $q_H = \left(\frac{p_H}{p_M} \left(\frac{L_M}{L_H}\right)^{2}\right) q_M$

应力换算按下式进行

式中下标H表示原型,M表示模型。 q_H 为原型应力, p_M 为荷载比, L_M 为尺寸H。

三、试验成果与分析

(一)对厚度不同承台上下边缘应力分析

在厚度不同承台桩基上分别加载冻结,对要求计算的各切片进行一次正射可得到相应切片的等色线图,如图 9 所示。由公式(1)可计算出不同厚度承台上、下边缘的应力分布图见图 7。

从以上应力分布图中可以看出,三种厚度不同的承台,均为承台对角线 4 一 4 方向切片 受力最大,在下边缘中部产生最大拉应力,在上边缘桩基根部产生最大压应力,各切片次主 应力数值见下表(1)。

344	1
灭	

l .	x台厚度H ₁ =300m 方载P ₁ =80t	m	承台厚度H 荷载P2=	•	承台厚度H ₈ =500mm 荷载P ₈ =168t					
应力一切片	最大拉应力	最大压应力	最大拉应力	最大压应力	最大拉应力	最大压应力				
1-1	85.2	-89.5	71.4	-76.5	62.3	80. 1				
2-2	69.2	-5 6. 8	54.6	-46.2	53.4	-31.2				
3—3	55,3	40.5	50.4	-29.2	44.5	-26.7				
4-4	88. 5	-95.6	79.8	-92.4	76.5	89.0				

说明: 应力单位 公斤/厘米3

最大拉应力达到88.5公斤/厘米²,大大超过了混凝土的抗拉强度,因此承台底面沿45° 方向将产生裂缝。

(二)对厚度H=300mm的承台各各切不同位置I—I,II—II,III—III (见图1,图2)的应力进行计算,其应力 σ_x 、 σ_t 、 τ_{xy} 、 σ_1 、 σ_2 的分布图见图12,切片1—1的主应力迹线见图13。各切片应力数值见表(2)。

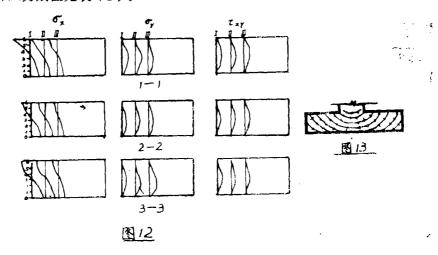


表 2

1-1切片

点号						1	I — I	[ш — ш											
应力	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6
σ _x	5 5	39	27	8.8	-2	-30	- 77	4]	28	14	1.2	-19	- 29	50	0	15	7.3	1.1	-6.3	-17	-21
σу	0	10.7	13.5	19	12	16	0	0	9.7	13	16	9.9	5.3	0	36.6	6.6	13	15	8.2	4.9	0
τχς	0	3.8	13	16	22.5	11	0	0	8.4	11	15	11	7.8	0	0	6.0	8.8	10	8, 1	6.6	0
σ1	35	47	37	31.5	30	27.4	0	41	33	17.7	30	19	14	0	36.6	19	19	22	14	10	0
σ 2	0	3	4.5	4.15	-20	— 43	- 77	0	5.8	-4	-12	-28	-38	-50	0	د .2	0.4	-6	-12	-23	-21

2-2切片

一、点号	(I-	1						n — e	[И Н								
应力。	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	. 4	5	6	
σx	45	33	17	15	10	-23	-34	27.6	20.6	11.3	24	-8.8	-17	-23	17	9.0	8.5	4.7	-7.2	-9.6	-15	
σу	0	9.4	11	13	12.5	8.0	0	0	8.3	11.4	12	12.4	7.7	0	0	10	11	12	12	9.4	0	
τχ	0	6.5	10	10	8.5	6.1	0	0	8,2	8.2	9.0	7.6	5.3	0	0	3.1	8.0	7,3	6.2	4.4	0	
σ1	45	39	25	24	19.3	15	0	27.6	26	14	30.3	19	14	0	17	13	18	17	18	10	0	
σο	0	3.2	2.7	3.5	-37	-30	-34	0	2.5	-2,6	-5.7	-15	-22	-2 3	0	6.4	1.6	0.5	~1 3	-10	-15	

3-3切片

、点号	点号]	[I — I	I		ш-ш								
应力	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6	
σx	39	22	14	3.6	-6.6	19	-30	26	95	7.7	0	-7.6	18	~2 3	20	17	13	13.1	3.7	9.7	-16	
σ,	0	10	14	17	15	11	0	0	0	11	11.2	10	8.2	0	0	12	15	15	14	12.5	0	
τχν	0	7.4	8.2	8.2	5.8	4	0	0	6.8	7.8	7.4	6.9	4.4	0	0	4.2	12	11	7.5	3.0	0	
σ1	39	27	22	23	20,3	17	0	26	20	17.7	18	16	13	0	20	20	25	24.8	20	17.1	0	
σ 2	0	5.0	5.5	-2.2	-12	-25	-30	0	5.3	1.3	3.7	-13	-3.3	-23	0	8.8	1.2	-2.8	-9.4	-15	-16	

说明, 应力单位 公斤/厘米2

以上资料可以看出,各切片 σ_x 不再是直线分布,而且在各切片内部出现 σ_y 挤压应力,因为此时模型跨度L与模型厚度H之比L/H<5所致。

(三)对1—1切片进行45°斜射,其上、下边缘 σ_z 应力分布图见图 8。从 σ_z 应力图中看出,下边缘中部出现较大的拉应力,其值为 85。2 公斤/厘米², 桩 基 根 部 压 应 力 达 到 126公斤/厘米²,由于应力集中引起。

(四)在1-1,4-4切片中,桩基根部与底边分别成 30° , 45° , 60° 不同夹角 I-I,I-I',1-I''线的应力分布是不同的由图11中看到,与底边 45° 夹角的1-I'中,在桩基根部出现切应力最大,同样是由于剪力集中引起。

四、结 论

从三种不同厚度承台模型试验结果看出:

- (一)桩基承台主要发生弯曲破坏和剪切破坏,其承台底部对角线中央拉应力最大,其 应力数值见表(1)。
- (二)在施加荷载区域,由于应力集中的影响 ,经试验数据分析看出 ,与承台底部成45°方向的截面上剪应力最大,为了防止开裂,此处应布置足够的斜拉钢筋。
- (三)由对承台厚度H=300mm, 计算跨度 L=1100mm 内部应力计算结果 〔见表(2)〕,可以看出,承台跨度与厚度之比小于四时,若采用一般梁的计算方法,将会引起较大误差。初步计算最大应力处,光弹试验的结果同按一般梁近似计算的结果比较,相差 约13%左右。

以上结论仅是初步的实验结果,欢迎批评指正。

参考文献

- [1] 天津大学主编 光弹性原理及及测技术
- [2] 弗罗赫特 光测弹性力学
- [3] ALBERCHT KUSKE PHOTOELASTIC STRESS ANALYSIS

(上接128页)

截割(X,Y)确定实数 β 。现证明 β 满足上确界定义的两个条件,亦即

1⁰岩x ∈ E,则x ≤ β,事实上,按截割(X, Y)的定义,E中一切数均属于X。

 2° 对任意的 $\epsilon > 0$,有 $x_{0} \in E$,适合 $x_{0} > \beta - \epsilon$,事实上,若不存在这种点 x_{0} ,亦即 E 中一切点x都满足 $x \leqslant \beta - \epsilon$,那么,由于 $\beta - \frac{\epsilon}{2}$ 大于 $\beta - \epsilon$,从而大于一切的x,按截割 (X,Y)

的定义,
$$\beta - \frac{\varepsilon}{2} \in Y$$
, 但因 $\beta - \frac{\varepsilon}{2}$ < β , 故 $\beta - \frac{\varepsilon}{2} \in X$, 矛盾。

最后我们应当注意到,若仅限在有理数集上来讨论,上述九个定理都不成立, 也 就 是说有理数集不是完备集。这正是把极限理论建立在完备的实数集是基础上的重要原因之一。

反映实数系连续性的等价命题多达二十几个。上述九个定理来自各个不同的书中,但是 还没有见到有哪一本书将这九个定理的等价性作一全面的论证。

参 考 文 献

- [1] J.M. Фихтенголья 《微积分学教程》
- [2] A.H.Xunuun 《数学分析简明教程》
- [3] 江泽坚等合编 《数学分析》
- [4] 陈传璋等编 《数学分析》1962年第二版
- [5] H.A. Фромов 《实变函数论》