氯仿一乙醇一水体系的液相平衡

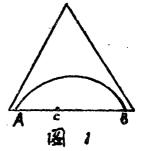
——氯仿的萃取提净

化工系 华克刚

由于我院化工系化工厂生产上的需要,希望将含有少量乙醇的粗氯仿设法洗净,从而得到工业氯仿,再行提供生产使用;为此,我们须先求得这一三元体系的液相平衡关系,然后进一步利用低沸点恒沸物的特性来提净。考虑到工业上液体物料的计量上,体积量度较重量量度更为方便,实验中采用了体积百分数关系并绘制了相图;参考了恒沸物重量组成也寻求出其体积百分组成,最后提出利用所得相图,如何萃取洗净从而获得工业氯仿的措施。

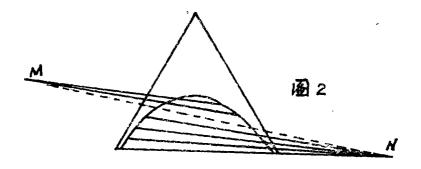
实 验

为了便于工业上参考使用,实验中采用常温(当时室温23.5℃),使用工业氯仿、无水酒精和蒸馏水三者进行实验,求取数据。


1、液相中平衡关系

在已知两组分互溶溶液中逐渐滴加第三组分,充分混合,直到刚刚开始出现混浊,如此进行了20个边缘点的测定(见表1),得出图1中的溶解度曲线。由于使用中无疑地重点在于右下角(不纯的氯仿),因而对曲线右下端进行了重点的测定,共测定方法如下:

表 1


序号	氯仿%	水 %	乙醇%	序号	氯仿%	水%	乙醇%
1	20.8	30.8	48.5	11	29.3	21.2	49.5
2	44.4	11.2	44.4	12	9.8	45.1	45.1
3	55.8	7.03	37.2	13	3.8	57.8	38.4
4	67.0	4.5	28 5	14	2.4	68.3	29.3
5	78.3	2.2	19.5	15	0.9	79.3	19.8
6	10.85	43.4	45.5	16	8.4	47.5	44.1
7	20.4	30.8	49.8	17	5.7	51.6	42.8
8	25.1	25.1	498	18	3.7	57.6	38.7
9	3 0.5	20.3	49.2	19	2.52	60.6	36.9
10	44.4	11.2	44.4	20	1.96	63,5	34.5

- (1)直接滴定 取30毫升氯仿滴加水0.15毫升开始出现混浊,计出H₂O=0.5%(图1中B点)
- (2)用直线反比法测 用同样的方法得出图1中左下端A点后,另取一已知组成C的混浊液(40毫升氯仿和60毫升水),充分混合静置分层,上下层体积比测得为6:4;在放大图中,经量度AC为15.88厘米,故CB为23.8厘米,符合了上述测定B点的H₂O为0.5%。

2、两个液相相互平衡的关系——结线的确定和极点的确立

在两相共存区内,取六种已知三组分系统点,充分混合后分层,计量其体积比,在上述图1中点出系统点后,试差做出结线,使该系统点分割这一结线为两段,其长度比为其体积的反比,从而得出两相的组成点,也即结线的两端点,把六根结线(加底边为7根),引伸到图外,得出第一第二两个极点M、N(图2)。数据如表2。(序号21,22删)。

疲 2

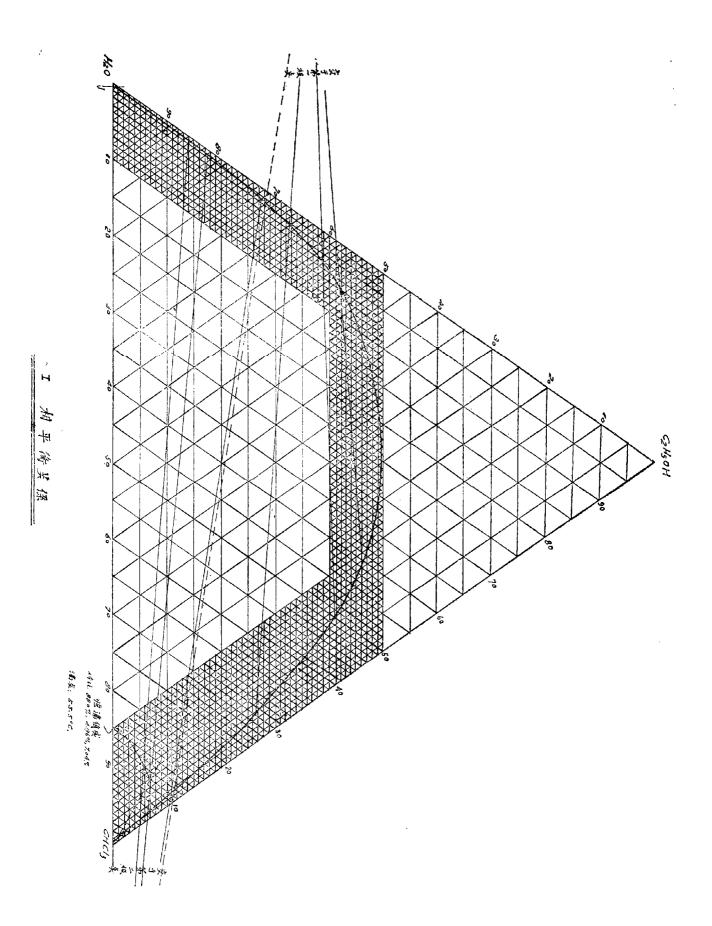
序 号	系		统		分 层 后		
/T 3	氯仿%	水 %	乙醇%	体积(毫升:毫升)		体积比(%:%)	
23	30	30	40	41.5	55.0	43.0	57.0
24	30	40	30	57.0	40.5	58.5	41.5
25	40	40	20	54.0	44.0	55.1	44.9
26	40	50	10	56.5	41.0	58.0	42.0
27	30	25	45	28.5	69.0	29.2	70.8
28	88.0	4.96	7.04	6.5	87.5	6.8	93.2

由图可见上部结线相交于第一极点M, 而下部结线相交于 第二 极 点 N, 图 1 及图 I 中 虚线贯穿MN为转折结线。

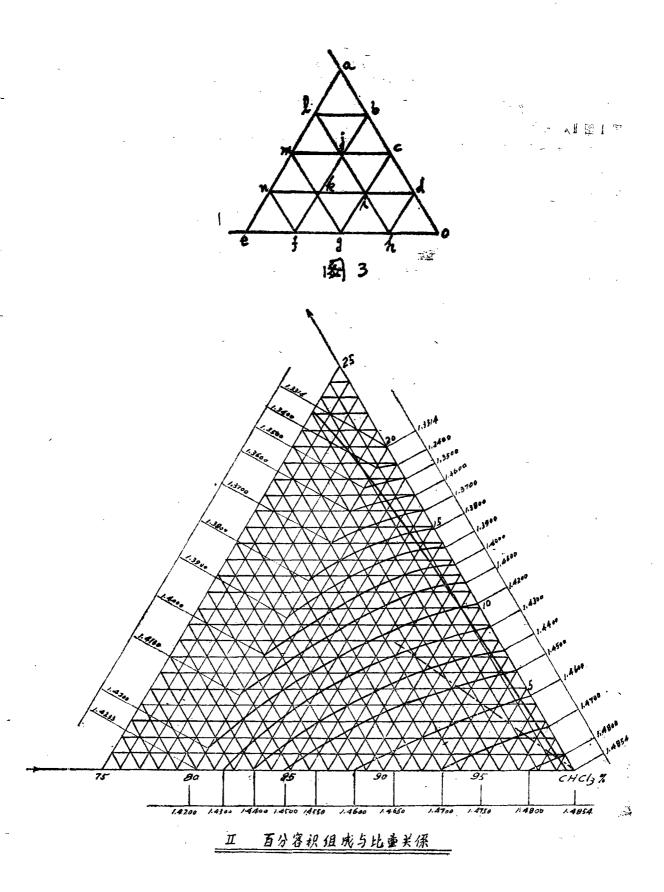
3、恒沸点混合物 (序号28的实验为恒沸物)

配制三元混合物, 按其性质试差 求 出沸点55.5℃, 其组成(体积 比:88.0%:4.96%:7.04%)与Lange手册所示:沸点55.5℃, 组 分重量比:92.5%:3.5%:4.0%一致, 下文命名为恒沸点A。

4、等比重线的绘制


配制不同组分的溶液(或混合液),测定其比重,在图中联出等比重线,得图1。 实验中,比重瓶W=9.89070克,瓶溶积V=10.1415毫升.23.5℃下水重度=0.997565克/毫升。数据见表3。

(参阅图3)


表 3

点	浛	·液配量, 毫升		瓶+液	液重 L克	重 度
	氯 仿	水	乙醇	(W+L) 克	水里 2九	(L/V)克/毫升
а	32.0		8.0	23,3935	13,5028	1,3314
b	25.5		4.5	23.8653	13.9746	1.3778
c	18.0		2.0	24.3103	14.4196	1.4218
đ	19.0		1.0	24.7740	14.8833	1.4675 平 均
d	14.25	 .	0.75	24.5683	14.6779	1.4472 $\int_{1.4574}$
e	12.0	3.0		24,4230	14,5323	1.43285
e	12.0	3.0		24,2280	14.3373	1.4137 1.4233
f	12.5	2.25	_	24.6187	14.7280	1.45215
g	18.0	2.0		24.7432	14.8525	1 4644
h	14.25	0.75		24.8508	.14.9601	1.4750
····i	13,5	0.75	0.75 -	24.5923	14.7016	1.4496
j	17.0	1.0	2.0	24.2035	14.3128	1.4112
k	12,75	1.5	0.75	24.4240	14.5333	1.4329
1	12.0	0.75	2,25	23.7456	14.8549	1.3661
m	12.0	1.5	1.5	23.9712	14.0805	1.3883
'n	12.0	2.25	0.75	24.0700	14.1793	1.39815 取
n,	12.0	2.25	0.75	24.2953	14.4046	1.4203 $\}_{1.4203}$
0	15.0	_		24.9560	15.0653	1.4354

--- 84---

关于三元液相平衡相图和富氯仿溶液的比重,都可以体积百分比三角形图表示出来,见图 I 图 I, 可做为本文结果的一部分,不再赘述。

至于结线可做解析分析如下:设三角形两个底角分别在X-Y座标上定为(-20, 0)和(+20, 0),经量度后第一极点M位于(-28.85, 12.6)和第二极点N位于(37.6, 0)它们的联线为转折结线,方程式为:

$$Y = -0.19X + 7.11$$

在MN线以上的结线, 都穿过M, 方程式为:

$$Y = aX + b$$

式中:

$$a > -0.19, b > 7.11$$

在MN线以下的结线都穿过N, 方程式为:

$$Y = aX + b$$

式中

$$a > -0.19$$
, $b < 7.11$

关于提净程序的讨论

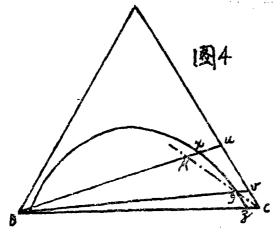
一般说来,来自生产车间的粗氯仿成分点P,可能有以下几种情况:

- (1)组分点P在xy曲线上; (参阅图 4)。
- (2)组分点P在xyuv面上; (参阅图 4)。
- (3)组分点P在yz曲线上: (参阅图4)。
- (4)组分点P在yzvc面上, (参阅图4)。

这后两种情况由于线长及面积极小, 相比来说可能性不大。

萃取提净措施可考虑为:

- 1. 取粗氯仿不论其组分点位于那个地方,为了使之转移到xyz线上,先加少量水(约为原体积的1/20左右),充分混匀静置后,分出下层清液,测定准确比重,从溶解度曲线和等比重线的交点得出这一下层清液的组成点P'位置。(参阅图 5 及图 I,I)
- 2. 若原粗氯仿点P或经初步处理而得的P'位于xy线上,应用 直线反比法则,连水点B得BP'线,与 AC 线(A为恒沸物点)相交于Q点,根据


量出线段长度比,由已知VP'体,积计算出加水量,按量加水得混浊液Q,利用低沸点A的特性,进行恒沸蒸馏作业。

按:
$$\frac{V_{A}}{V_{C}} = \frac{\overline{QC}}{\overline{OA}} \qquad \text{和 } V_{A} + V_{C} = V_{Q} = V_{P'} + V_{B}$$

可以馏出VA恒沸物及Vc体积的釜底工业氯仿。(参阅图5)。

3. 若原粗氯仿点P或经初步处理而得的P'溶液点位于yz线上,也应设法使之移到xy线

--88--

上,其措施为:添加已知浓度(如 97.5% 体积)乙醇少量,以提高其位置,使之能略高于y点得P''点,滴加纯水到开始混浊点P''测其比重;由图 I定其位置即上节中的P''点。然后按上节做法(见图 6),即

$$\frac{\mathbf{V}_{\mathbf{A}}}{\mathbf{V}_{\mathbf{C}}} = \frac{\overline{\mathbf{QC}}}{\overline{\mathbf{QA}}}, \quad \mathbf{V}_{\mathbf{A}} + \mathbf{V}_{\mathbf{C}} = \mathbf{V}_{\mathbf{Q}} = \mathbf{V}_{\mathbf{p}}''' + \mathbf{V}_{\mathbf{B}}$$

蒸馏出VA体积的低沸物,釜底 Vc体积为氯仿。

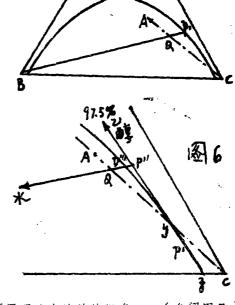
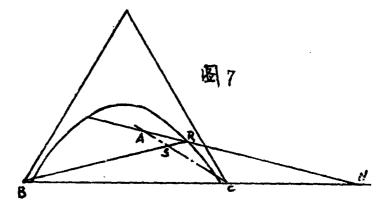



图 5

- 4、上述恒沸物馏出量不少,不应废弃,可用下述方法继续提净 (参阅图7)
- (1)先 静 置 分 层,取下层清液 R,R 的位置可由经过A点的 结线与曲线相交而得。
- (2)由 R配水使 系统达到 S点; 水量仍 按线段反比。
- (3)蒸馏系统点 S.又可得恒沸物 A和釜 底工业氯仿(VA,Vc 仍如前述计量推算)。

结 语

因限于实验的精确度,和对生产认识水平的局限,且在实验研究之后,我院化工厂生产项目转移,故未能在本校生产规模上体现成果,另外溶液与理想溶液是有偏离的,运算中会有一定的误差,但所得图表及图 I、 I,是有一定参考价值的。

--89---