[1]马留洋,胡争争,栗武华.基于 AR-SSVEP 和 YOLOv3 的时敏目标识别方法[J].郑州大学学报(工学版),2025,46(04):32-39.[doi:10.13705/j.issn.1671-6833.2025.01.017]
 MA Liuyang,HU Zhengzheng,LI Wuhua.Time-sensitive Target Recognition Method Based on AR-SSVEP and YOLOv3[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):32-39.[doi:10.13705/j.issn.1671-6833.2025.01.017]
点击复制

基于 AR-SSVEP 和 YOLOv3 的时敏目标识别方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年04期
页码:
32-39
栏目:
出版日期:
2025-07-10

文章信息/Info

Title:
Time-sensitive Target Recognition Method Based on AR-SSVEP and YOLOv3
文章编号:
1671-6833(2025)04-0032-08
作者:
马留洋 胡争争 栗武华
中国电子科技集团公司第二十七研究所,河南 郑州 450047
Author(s):
MA Liuyang HU Zhengzheng LI Wuhua
The 27th Research Institute of China Electronics Technology Group Corporation, Zhengzhou 450047, China)
关键词:
增强现实 人工智能 时敏目标 目标检测 稳态视觉诱发电位 目标识别
Keywords:
augmented reality artificial intelligence time-sensitive target object detection steady state visual evoked potential target recognition
分类号:
R318. 04TP391. 4
DOI:
10.13705/j.issn.1671-6833.2025.01.017
文献标志码:
A
摘要:
针对目标跟踪过程中目标身份 ( ID) 跳变而影响时敏目标识别的问题,提出了一种融合增强现实技术(AR) 、稳 态 视 觉 诱 发 电 位 ( SSVEP ) 和 YOLOv3 的 人 在 回 路 的 “ 检 测-决 策” 时 敏 目 标 识 别 方 法 ( AR-SSVEPYOLOv3) 。 利用目标感知模块获取前端场景视频,并通过 AR 眼镜实时呈现,YOLOv3 算法完成场景视频中敏感目标检测,AR-SSVEP 脑电处理模块解析受试者的脑电数据,在 ID 变化过程中对时敏目标进行识别。 对比分析时敏目标的识别率,结果表明:AR-SSVEP-YOLOv3 时敏目标识别方法相比 YOLOv3 算法识别率平均提升了 18. 8%,相比 YOLOv3-Sort 算法平均提升了 8. 0%。 AR-SSVEP-YOLOv3 时敏目标识别方法可以降低目标 ID 跳变对时敏目标识别的影响,提升人机交互能力和时敏目标识别率。
Abstract:
To address the problem of target identity ( ID) fluctuation during target tracking, which might affect the time-sensitive target recognition, an " detection-decision" time-sensitive target recognition method ( AR-SSVEP-YOLOv3) was proposed which integrated augmented reality (AR) technology, steady state visual evoked potential ( SSVEP) , and YOLOv3. The target perception module obtained the front-end scene video and presented it in reatime through an AR headset. The YOLOv3 algorithm completed the detection of sensitive targets in the scene video, and the AR-SSVEP EEG processing module decoded the EEG data of the subject during ID changes to identify time-sensitive targets. The correct recognition rate of time-sensitive targets was compared and analyzed. The results showed that the average improvement was 18. 8% in the recognition accuracy of AR-SSVEP-YOLOv3 time-sensitive target recognition method compared with the YOLOv3 algorithm, and the average improvement was 8. 0% compared with the YOLOv3-Sort algorithm. The AR-SSVEP-YOLOv3 time-sensitive target recognition method could reduce the influence of target ID fluctuation on time-sensitive target recognition and improve the human-computer interaction ability and the correct recognition rate of time-sensitive targets.

参考文献/References:

[1] 吴晗, 张志龙, 李楚为, 等. 时敏目标的类型与瞄准 点识别算法[ J] . 航空兵器, 2022, 29(2) : 24-29. 

WU H, ZHANG Z L, LI C W, et al. Recognition algorithm for types and aiming points of the time-sensitive target[ J] . Aero Weaponry, 2022, 29(2) : 24-29. 
[2] GURKAN F, GUNSEL B, OZER C. Robust object tracking via integration of particle filtering with deep detection [ J] . Digital Signal Processing, 2019, 87: 112-124. 
[3] CHEN J, LIN Y M, HUANG D T, et al. Robust tracking algorithm for infrared target via correlation filter and particle filter [ J ] . Infrared Physics & Technology, 2020, 111: 103516. 
[4] 周孟然, 李学松, 朱梓伟, 等. 井下矿工多目标检测 与跟踪联合算法[J]. 工矿自动化, 2022, 48(10): 40- 47. 
ZHOU M R, LI X S, ZHU Z W, et al. A joint algorithm of multi-target detection and tracking for underground miners[ J] . Journal of Mine Automation, 2022, 48(10) : 40-47. 
[5] 黄培荣, 宋剑, 李楠. 打击时敏目标的决策任务层次 分解[ J] . 计算机与数字工程, 2014, 42( 10) : 1905- 1907. 
HUANG P R, SONG J, LI N. Decision-making task hierarchical decomposition of blowing time sensitive target [ J] . Computer & Digital Engineering, 2014, 42 ( 10) : 1905-1907. 
[6] ARPAIA P, DURACCIO L, MOCCALDI N, et al. Wearable brain-computer interface instrumentation for robot-based rehabilitation by augmented reality [ J] . IEEE Transactions on Instrumentation and Measurement, 2020, 69(9) : 6362-6371. 
[7] 黄章瑞. 情境驱动的 AR-BCI 脑机交互方法研究[ D] . 郑州: 郑州大学, 2021. 
HUANG Z R. Research on situations drive brain-computer interaction based on AR-BCI[ D] . Zhengzhou: Zhengzhou University, 2021. 
[8] 蒋永玉. 假手脑控的增强现实视觉刺激范式及其异步 应用系统研究[D] . 西安: 西安交通大学, 2022. 
JIANG Y Y. Research on augmented-reality visually stimulus paradigm and its asynchronous BCI system for prosthetic hands[D]. Xi’an: Xi’an Jiaotong University, 2022. 
[9] FANG B, DING W L, SUN F C, et al. Brain-computer interface integrated with augmented reality for human-robot interaction[ J] . IEEE Transactions on Cognitive and Developmental Systems, 2023, 15(4) : 1702-1711. 
[10] ZHANG R, CAO L J, XU Z X, et al. Improving AR-SSVEP recognition accuracy under high ambient brightness through iterative learning[ J] . IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1796-1806.
[11] 邹霞. 基于 SSVEP 的脑机接口系统设计与研究[ D] . 南昌: 南昌大学, 2014. 
ZOU X. Design and research of brain-computer interface system based on SSVEP [ D] . Nanchang: Nanchang University, 2014. 
[12] 刘辉, 刘 鑫 满, 刘 大 东. 面 向 复 杂 道 路 目 标 检 测 的 YOLOv5 算 法 优 化 研 究 [ J ] . 计 算 机 工 程 与 应 用, 2023, 59(18) : 207-217. 
LIU H, LIU X M, LIU D D. Research on optimization of YOLOv5 detection algorithm for object in complex road [ J] . Computer Engineering and Applications, 2023, 59 (18) : 207-217. 
[13] 院老虎, 常玉坤, 刘家夫. 基于改进 YOLOv5s 的雾天 场景 车 辆 检 测 方 法 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44(3) : 35-41. 
YUAN L H, CHANG Y K, LIU J F. Vehicle detection method based on improved YOLOv5s in foggy scene[ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, 44(3) : 35-41. 
[14] 李北明, 金荣璐, 徐召飞, 等. 基于特征蒸馏的改进 Ghost-YOLOv5 红外目标检测算法[ J] . 郑州大学学报 (工学版) , 2022, 43(1) : 20-26. LI B M, JIN R L, XU Z F, et al. An improved GhostYOLOv5 infrared target detection algorithm based on feature distillation [ J ] . Journal of Zhengzhou University (Engineering Science) , 2022, 43(1) : 20-26. 
[15] HORII S, NAKAUCHI S, KITAZAKI M. AR-SSVEP for brain-machine interface: estimating user′s gaze in headmounted display with USB camera[C]∥2015 IEEE Virtual Reality (VR) . Piscataway: IEEE, 2015: 193-194. 
[16] SI-MOHAMMED H, PETIT J, JEUNET C, et al. Towards BCI-based interfaces for augmented reality: feasibility, design and evaluation [ J] . IEEE Transactions on Visualization and Computer Graphics, 2020, 26 ( 3 ) : 1608-1621. 
[17] SHAO X H, LIN M X. Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification [ J ] . Cognitive Neurodynamics, 2020, 14(5) : 689-696. 
[18] YIN X G, LIN M X. Multi-information improves the performance of CCA-based SSVEP classification[ J] . Cognitive Neurodynamics, 2024, 18(1) : 165-172. 
[19] ZHAO X C, LIU C Y, XU Z X, et al. SSVEP stimulus layout effect on accuracy of brain-computer interfaces in augmented reality glasses [ J] . IEEE Access, 2020, 8: 5990-5998. 
[20] WANG K, ZHAI D H, XIONG Y H, et al. An MVMDCCA recognition algorithm in SSVEP-based BCI and its application in robot control [ J ] . IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 ( 5) : 2159-2167. 
[21] 张力新, 张裕坤, 柯余峰, 等. 基于 Hololens 的增强 现实脑-机 接 口 研 究 [ J] . 中 国 生 物 医 学 工 程 学 报, 2019, 38(1) : 51-58. 
ZHANG L X, ZHANG Y K, KE Y F, et al. A study of argument reality based brain-computer interface ( ARBCI) in Hololens[ J] . Chinese Journal of Biomedical Engineering, 2019, 38(1) : 51-58. 
[22] 何丽. 基于碎片化视频信息的关键目标人物检测和跟 踪[D] . 南京: 南京邮电大学, 2023. 
HE L. Key target person detection and tracking based on fragmented video information[ D] . Nanjing: Nan

相似文献/References:

[1]王定标,王 帅,张浩然,等.流体拓扑优化的方法及应用综述[J].郑州大学学报(工学版),2023,44(02):1.[doi:10.13705/j.issn.1671-6833.2023.02.021]
 WANG Dingbiao,WANG Shuai,ZHANG Haoran,et al.A Review of Methods and Applications for Fluid Topology Optimization[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):1.[doi:10.13705/j.issn.1671-6833.2023.02.021]
[2]向 飒.用户画像下学术期刊智能出版的融合发展及系统构建[J].郑州大学学报(工学版),2023,44(03):123.[doi:10.13705/j.issn.1671-6833.2023.03.023]
 XIANG Sa.Integrated Development and Platform Construction of Intelligent Publishing of Academic Journal with User Profile[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):123.[doi:10.13705/j.issn.1671-6833.2023.03.023]

更新日期/Last Update: 2025-07-13