[1]田 钊,张乾钟,赵 轩,等.基于手机信令数据的城市居民动态 OD 矩阵提取方法[J].郑州大学学报(工学版),2024,45(03):46-54.[doi:10. 13705 / j. issn. 1671-6833. 2024. 03. 006]
 TIAN Zhao,ZHANG Qianzhong,ZHAO Xuan,et al.Dynamic OD Matrix Extraction Method of Urban Residents Based on Cell Phone Signaling Data[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):46-54.[doi:10. 13705 / j. issn. 1671-6833. 2024. 03. 006]
点击复制

基于手机信令数据的城市居民动态 OD 矩阵提取方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45
期数:
2024年03期
页码:
46-54
栏目:
出版日期:
2024-04-20

文章信息/Info

Title:
Dynamic OD Matrix Extraction Method of Urban Residents Based on Cell Phone Signaling Data
文章编号:
1671-6833(2024)03-0046-09
作者:
田 钊1 张乾钟1 赵 轩1 陈 斌2 佘 维1 杨艳芳34
1. 郑州大学 网络空间安全学院,河南 郑州 450001;2. 郑州大学 计算机与人工智能学院,河南 郑州 450001;3. 交 通运输部科学研究院,北京 100029;4. 综合交通运输大数据应用技术交通运输行业重点实验室,北京 100029
Author(s):
TIAN Zhao 1 ZHANG Qianzhong 1 ZHAO Xuan 1 CHEN Bin 2 SHE Wei 1 YANG Yanfang 34
1. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; 2. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China; 3. China Academy of Transportation Sciences, Beijing 100029, China; 4. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing 100029, China
关键词:
城市出行 智能交通系统 手机信令数据 动态 OD 矩阵 驻留点识别 时空特征分析
Keywords:
city travel intelligent traffic system cell phone signaling data dynamic origin-destination matrix dwell point identification spatial-temporal characteristics analysis
分类号:
TU998U491
DOI:
10. 13705 / j. issn. 1671-6833. 2024. 03. 006
文献标志码:
A
摘要:
现有的城市居民出行调查周期较长,交通小区划分粒度粗糙,导致调查不能及时准确地获取居民出行信 息。 针对该问题,提出了一种基于手机信令数据的城市居民动态 OD 矩阵提取方法。 首先,针对信令数据中的两种 复杂噪声:乒乓切换和漂移数据,提出了基于窗口阈值的检测与等效位置替换方法,以及复杂漂移点的检测和标记 处理方法;然后,提出一种改进的 ST-DBSCAN 聚类方法,引入一种等时化方法将时间信息与空间信息相结合,识别 出行过程中的驻留点;最后,基于地理信息系统构建含有道路关键节点的路网,将居民出行 OD 与路网节点相匹配, 有效推导出城市居民动态 OD 矩阵。 实验结果表明:与 ST-DBSCAN 算法相比,所提改进的 ST-DBSCAN 算法在聚类 效果和识别速度上分别提升了 6. 10%和 5. 26%;与统计方法和二阶统计量方法相比,基于改进的 ST-DBSCAN 算法 的动态 OD 矩阵提取方法在均方误差( MSE) 上分别降低了 16. 98% 和 21. 55%。 以北京市为例,运用提出的动态 OD 矩阵提取方法,能够及时有效地分析城市居民日常与高峰时段的出行特征。
Abstract:
Previous surveys of urban resident travel were hindered by prolonged durations and insufficient granularity in traffic zone divisions, which impeded the timely and accurate acquisition of travel data. To address this issue, this study proposed a method for extracting the dynamic origin-destination ( OD) matrix of urban residents based on mobile phone signaling data. Firstly, methods to address two complex types of noise inherent in the signaling data: ping-pong switching data and drifting data were proposed. Specifically, a window thresholdbased detection and equivalent location replacement method for ping-pong switching data was proposed, as well as a complex drift point detection and marking method for drifting data. Secondly, an enhanced ST-DBSCAN clustering algorithm was proposed, which incorporated a temporal isochronization method to integrate temporal and spatial information, enabling the identification of dwell points during travel. Finally, a road network with key nodes was established using geographic information system ( GIS) , aligning resident travel OD with the network nodes to effectively derive the dynamic OD matrix of urban residents. Experimental results showed that the enhanced STDBSCAN clustering algorithm outperformed the traditional ST-DBSCAN, improving clustering efficiency by 6. 10% and identification speed by 5. 26%. Furthermore, the dynamic OD matrix extraction method based on the enhanced ST-DBSCAN clustering algorithm achieved approximately 16. 98% and 21. 55% reductions in mean squared error compared to the conventional statistical methods and the second-order statistical methods, respectively. By applying the proposed dynamic OD matrix extraction method to the case of Beijing, this study was able to conduct timely and effective analyses of daily and peak travel patterns of urban residents.

参考文献/References:

[1] WU L L, YANG B, JING P. Travel mode detection based on GPS raw data collected by smartphones: a systematic review of the existing methodologies[ J] . Information, 2016, 7(4) : 67.

 [2] PRELIPCEAN A C, GIDÓFALVI G, SUSILO Y O. Transportation mode detection: an in-depth review of applicability and reliability[ J] . Transport Reviews, 2017, 37(4) : 442-464. 
[3] SHEN L, STOPHER P R. Review of GPS travel survey and GPS data-processing methods [ J ] . Transport Reviews, 2014, 34(3) : 316-334.
 [4] 刘华斌. 手机信令数据背景下城市交通出行方式选择 辨识方法研究[D] . 北京: 北京交通大学, 2019. LIU H B. Urban transportation modes recognition based on mobile signaling data [ D] . Beijing: Beijing Jiaotong University, 2019. 
[5] 苗壮. 基于手机信令数据的数据清洗挖掘与居民职住 空间分析[D] . 成都: 西南交通大学, 2017. MIAO Z. Research on data cleaning, mining, jobs and residential locations based on mobile phone signaling data [D] . Chengdu: Southwest Jiaotong University, 2017.
 [6] 余锦斌. 基于手机信令的数据分析引擎设计与实现 [D] . 南京: 东南大学, 2018. YU J B. Design and implementation of analysis engine based on mobile phone data[ D] . Nanjing: Southeast University, 2018.
 [7] 李曙光. 用于动态交通分配的合理路径集合算法研究 [J]. 郑州大学学报(工学版), 2009, 30(2): 125-128. LI S G. Reasonable path set algorithm for dynamic traffic assignment[ J] . Journal of Zhengzhou University ( Engineering Science) , 2009, 30(2) : 125-128. 
[8] WHITE J, WELLS I. Extracting origin destination information from mobile phone data[C]∥Eleventh International Conference on Road Transport Information and Control. London: IET, 2002: 30-34.
 [9] CACERES N, WIDEBERG J P, BENITEZ F G. Deriving origin-destination data from a mobile phone network[ J] . IET Intelligent Transport Systems, 2007, 1(1) : 15. 
[10] ZHANG Y, QIN X, DONG S, et al. Daily O-D matrix estimation using cellular probe data[ C]∥ Transportation Research Board 89th Annual Meeting. Washington DC: TRB, 2010.
 [11] MAMEI M, BICOCCHI N, LIPPI M, et al. Evaluating origin-destination matrices obtained from CDR data [ J] . Sensors, 2019, 19(20) : 4470. 
[12] FEKIH M, BONNETAIN L, FURNO A, et al. Potential of cellular signaling data for time-of-day estimation anspatial classification of travel demand: a large-scale comparative study with travel survey and land use data [ J] . Transportation Letters, 2022, 14(7) : 787-805.
 [13] 黄美灵, 陆百川. 基于手机定位的交通 OD 数据获取 技术[ J] . 重庆 交 通 大 学 学 报 ( 自 然 科 学 版) , 2010, 29(1) : 162-166. HUANG M L, LU B C. Traffic OD data collection technology based on mobile phone location [ J ] . Journal of Chongqing Jiaotong University (Natural Science) , 2010, 29(1) : 162-166.
 [14] 魏玉萍, 韩 印. 基 于 手 机 定 位 的 交 通 OD 获 取 技 术 [ J] . 交通与运输(学术版) , 2011(2) : 33-36. WEI Y P, HAN Y. Traffic OD date collection technology based on mobile phone [ J ] . Traffic & Transportation, 2011(2) : 33-36.
 [15] 蔡军, 刘锴, 刘涟涟. 基于 VISUM 模型的公交 OD 反 推研究: 以西宁市为例[ J] . 交通运输系统工程与信 息, 2013, 13(1) : 49-56. CAI J, LIU K, LIU L L. Bus OD matrix estimation by VISUM model: case of Xining of China [ J] . Journal of Transportation Systems Engineering and Information Technology, 2013, 13(1) : 49-56.
 [16] YU C, HE Z C. Analysing the spatial-temporal characteristics of bus travel demand using the heat map[ J] . Journal of Transport Geography, 2017, 58: 247-255. 
[17] GUO D S, ZHU X, JIN H, et al. Discovering spatial patterns in origin-destination mobility data[ J] . Transactions in GIS, 2012, 16(3) : 411-429.
 [18] GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L. Understanding individual human mobility patterns [ J ] . Nature, 2008, 453(7196) : 779-782.

更新日期/Last Update: 2024-04-29