[1]曹海亮,刘红贝,张子阳,等.基于LBM 的低导热材料板强化沸腾换热机理分析[J].郑州大学学报(工学版),2024,45(03):103-110.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 004]
 CAO Hailiang,LIU Hongbei,ZHANG Ziyang,et al.Analysis of Enhanced Boiling Heat Transfer Mechanism Using Low Thermal Conductive Material Plate Based on LBM[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):103-110.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 004]
点击复制

基于LBM 的低导热材料板强化沸腾换热机理分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
45卷
期数:
2024年03期
页码:
103-110
栏目:
出版日期:
2024-04-20

文章信息/Info

Title:
Analysis of Enhanced Boiling Heat Transfer Mechanism Using Low Thermal Conductive Material Plate Based on LBM
文章编号:
1671-6833( 2024) 03-0103-08
作者:
曹海亮 刘红贝 张子阳 赵晓亮 郭 赛
郑州大学 机械与动力工程学院,河南 郑州 450001
Author(s):
CAO Hailiang LIU Hongbei ZHANG Ziyang ZHAO Xiaoliang GUO Sai
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
低导热材料板 气泡动力学 格子玻尔兹曼方法 气液两相流 强化换热
Keywords:
low thermal conductive material plate bubble dynamics LBM gas-liquid two-phase flow heat transferenhancement
分类号:
TK124TK11+4
DOI:
10. 13705/ j. issn. 1671-6833. 2024. 03. 004
文献标志码:
A
摘要:
为进一步强化沸腾换热,通过在固体加热器的上壁面附近嵌入多段低导热材料板,实现了沸腾换热的受热面上的温度随空间的交替变化。采用单组分多相LBM,考察了低导热材料板的数量和间隙间距对沸腾换热性能和气泡动力学的影响,从微观角度揭示了添加低导热材料板强化沸腾换热的机理。结果表明:气泡动态行为随间隙间距的增大而发生变化,会出现气泡合并、独立生长等气泡脱离过程。结合气泡动态行为、温度场和流场分析,发现气泡首先会在间隙受热面处成核生长,脱离气泡的涡流可以促进生长气泡在受热面的横向迁移和合并过程,在一定间隙间距范围,气泡会相互融合形成较大的液桥,液桥的存在能够促进受热面气泡根部周围微层的蒸发,推动了间隙受热面处的冷流体再润湿过程。添加多段低导热材料板,间隙处热量积聚、气泡合并形成液桥、间隙受热面的再润湿、气泡横向迁移和多气泡的快速合并等这些过程的共同作用强化了沸腾换热性能。
Abstract:
In order to further enhance boiling heat transfer,multiple low thermal conductive material plates were embedded near the upper wall of the solid heater,alternating temperature variations with space on the heating surface for boiling heat transfer were obtained in this study. The single-component multiphase lattice Boltzmann method was used to investigate the effects of the number and gap spacing of low thermal conductive material plates on boiling heat transfer performance and bubble dynamics, the mechanism of enhancing boiling heat transfer by adding low thermal conductive material plates was revealed from a microscopic perspective. The results indicated that the dynamic behavior of bubbles changed with the increase of gap spacing, leading to bubble merging, independent growth, and other bubble detachment processes. Based on the analysis of bubble dynamic behavior, temperature field, and flow field, it was found that bubbles first nucleated and grew at the gap heated surface,the vortex separated from bubbles could promote the lateral migration and merging process of growing bubbles on the heated surface. Morever, within a certain gap spacing range, bubbles would fuse with each other to form a liquid bridge,which could promote the evaporation of the micro layer around the root of the bubbles on the heated surface, and pushed the cold fluid to wet the gap heated surface again. The combined effects of adding multiple low thermal conductive material plates, heat accumulation at gaps, bubble merging to forma liquid bridge, re-wetting of gap heated surfaces, lateral migration of bubbles, and rapid merging of multiple bubbles could enhance boiling heat transfer performance.

参考文献/References:

[1] 郭茶秀, 魏金宇. 电池排布方式对21700 锂电池相变 热管理系统的影响[ J]. 郑州大学学报( 工学版), 2023, 44(2): 91-97.

GUO C X, WEI J Y. Influence of different arrangement on phase change thermal management system of 21700 lithium battery[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 91-97.
[2] 郑晓欢, 纪献兵, 王野, 等. 超亲/ 疏水性表面池沸腾 传热研究[J]. 化工进展, 2016, 35(12): 3793-3798.
ZHENG X H, JI X B, WANG Y, et al. Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[ J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3793-3798.
[3] 曹海亮, 张红飞, 左潜龙, 等. 梯形微槽道表面池沸 腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111- 4120.
CAO H L, ZHANG H F, ZUO Q L, et al. Study on pool boiling heat transfer performance of trapezoidal microchannel surface [ J]. CIESC Journal, 2021, 72 ( 8): 4111-4120.
[4] MUKHERJEE A, DHIR V K. Study of lateral merger of vapor bubbles during nucleate pool boiling[J]. Journal of Heat Transfer, 2004, 126(6): 1023-1039.
[5] HUANG Y, TIAN Y, YE W, et al. Enhancing pool boiling heat transfer by structured surfaces-a lattice Boltzmann study [ J]. Journal of Applied Fluid Mechanics, 2022, 15(1): 139-151.
[6] YUAN J J, YE X, SHAN Y G. Two-dimensional lattice Boltzmann method to study the influence of nucleation distance on heat flux during bubble coalescence[J]. International Journal of Thermal Sciences, 2022, 172: 107353.
[7] 徐刚, 梁帅, 刘武发, 等. 流动聚焦型微流控芯片微 通道结构优化[J]. 郑州大学学报(工学版), 2020, 41(4): 87-91.
XU G, LIANG S, LIU W F, et al. Optimization of micro- channel structure of flow focusing microfluidic chip [J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 87-91.
[8] ZHANG L, WANG T, KIM S, et al. The effects of wall superheat and surface wettability on nucleation site interactions during boiling[ J]. International Journal of Heat and Mass Transfer, 2020, 146: 118820.
[9] MAGRINI U, NANNEI E. On the influence of the thickness and thermal properties of heating walls on the heat transfer coefficients in nucleate pool boiling[J]. Journal of Heat Transfer, 1975, 97(2): 173-178.
[10] RAHMAN M M, POLLACK J, MCCARTHY M. Increasing boiling heat transfer using low conductivity materials [J]. Scientific Reports, 2015, 5: 13145.
[11] 孟璐璐, 谢添玺, 陈志豪, 等. 材料交错分布型传热 板表面异态干涉沸腾传热特性研究[J]. 化工学报, 2021, 72(9): 4564-4572.
MENG LL, XIE TX, CHEN ZH, et al. Study of different- mode-interacting boiling heat transfer characteristics on the heating plate with material cross arrangement[J]. CIESC Journal, 2021, 72(9): 4564-4572.
[12] UTAKA Y, XIE T X, CHEN Z H, et al. Critical heat flux enhancement in narrow gaps via different-mode-interacting boiling with nonuniform thermal conductance inside heat transfer plate[J]. International Journal of Heat and Mass Transfer, 2019, 133: 702-711.
[13] BHATNAGAR P L, GROSS E P, KROOK M K. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems [J]. Physical Review, 1954, 94(3): 511-525.
[14] KUPERSHTOKH A L, MEDVEDEV D A, KARPOV D I. On equations of state in a lattice Boltzmann method [J]. Computers & Mathematics with Applications, 2009, 58(5): 965-974.
[15] YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of fluids, 2006, 18(4): 042101.
[16] 曾建邦, 李隆键, 廖全, 等. 池沸腾中气泡生长过程 的格子Boltzmann 方法模拟[J]. 物理学报, 2011, 60 (6): 520-529.
ZENG J B, LI L J, LIAO Q, et al. Simulation of bubble growth process in pool boiling using lattice Boltzmann method [ J]. Acta PhysicaSinica, 2011, 60 ( 6): 520 -529.
[17] 曹海亮, 安琪, 左潜龙, 等. 一种新的固液共轭沸腾 传热LB 模型[J]. 郑州大学学报(工学版), 2023, 44 (2): 75-81.
CAO H L, AN Q, ZUO Q L, et al. A new LB model for solid-liquid conjugate boiling heat transfer[J]. Journal of Zhengzhou University ( Engineering Science), 2023, 44 (2): 75-81.
[18] GONG S, CHENG P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer[J]. International Journal of Heat and Mass Transfer, 2012, 55(17/ 18): 4923-4927.
[19] SON G, DHIR V K, RAMANUJAPU N. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[ J]. Journal of Heat Transfer, 1999, 121(3): 623-631.
[20] 汪鹏军, 祁影霞, 谢荣建. 气泡生长及脱离过程的格 子玻尔兹曼模拟[ J]. 轻工机械, 2020, 38(5): 32 -38.
WANG P J, QI Y X, XIE R J. Lattice Boltzmann simulation of bubble growth and detachment[J]. Light Industry Machinery, 2020, 38(5): 32-38.
[21] FRITZ W. Maximum volume of vapor bubbles[J]. Physic Zeitschz, 1935, 36: 379-354.
[22] ZOU Q S, HE X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model [ J]. Physics of Fluids, 1997, 9(6): 1591-1598.
[23] GONG S, CHENG P. Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part Ⅱ: bubble interactions above multi-cavities[J]. International Journal of Heat and Mass Transfer, 2016, 100: 938-948.

备注/Memo

备注/Memo:
收稿日期:2023-09-20;修订日期:2023-10-30
基金项目:河南省重点研发与推广专项项目(192102210143)
作者简介:曹海亮(1976— ),男,河南洛阳人,郑州大学教授,博士,主要从事沸腾换热等研究,E-mail:caohl@ zzu. edu. cn。
更新日期/Last Update: 2024-04-29