[1]郭茶秀,魏金宇.电池排布方式对 21700 锂电池相变热管理系统的影响[J].郑州大学学报(工学版),2023,44(02):91-97.[doi:10.13705/j.issn.1671-6833.2023.02.009]
 GUO Chaxiu,WEI Jinyu.Influence of Different Arrangement on Phase Change Thermal Management System of 21700 Lithium Battery[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):91-97.[doi:10.13705/j.issn.1671-6833.2023.02.009]
点击复制

电池排布方式对 21700 锂电池相变热管理系统的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44卷
期数:
2023年02期
页码:
91-97
栏目:
出版日期:
2023-02-27

文章信息/Info

Title:
Influence of Different Arrangement on Phase Change Thermal Management System of 21700 Lithium Battery
作者:
郭茶秀 魏金宇
郑州大学 机械与动力工程学院,河南 郑州 450001

Author(s):
GUO Chaxiu WEI Jinyu
School of Mechanical and Power Engineering, Zhengzhou University, 450001, Zhengzhou, Henan

关键词:
数值模拟 锂离子电池 热管理 相变材料 导热率
Keywords:
numerical simulation lithium-ion battery thermal management phase change material thermal conductivity
分类号:
TK124
DOI:
10.13705/j.issn.1671-6833.2023.02.009
文献标志码:
A
摘要:
以 21700 锂离子电池组为研究对象,对不同排布方式下的锂电池分别控制电池间距、对流换热系数和相变 材料( PCM)导热率,并对其进行有限元仿真。 研究了电池间距、对流换热系数和 PCM 导热率对相变电池热管理系 统(BTMS)下不同排布方式(长方形、四边形、六边形)的电池组温度场的影响。 结果表明:当电池间距为 4 mm 和 6 mm 时,3 者具有近似的最高温度,而当电池间距为 2 mm 和 1 mm 时,长方形排布的电池组最高温度最大,在 2 mm 时长方形排布的电池组最大温升分别为四边形排布下和六边形排布下的电池组的 105. 86%和 108. 25%,而 3 者的 温差均随间距增大,总体呈现出变小的趋势;在不同的对流换热系数下,长方形排布的电池组最高温度总是最大而 四边形最小,随着对流换热系数的增大,3 者温差呈现出变大的趋势;随着 PCM 导热系数的增大,3 者的最高温度 均不断下降且下降速率越来越小,在 5 种不同 PCM 导热系数下,长方形排布的电池组最大温升平均是四边形排布 和六边形排布电池组的 105. 31%和 106. 02%,3 者的潜热储热阶段的温差均有减小,显热阶段对长方形和六边形的 温差没有影响,四边形的温差却不断增大。 综合考虑最高温度和温差,采用六边形排布的锂电池组在 PCM 热管理 下的热性能最佳。
Abstract:
Taking 21700 lithium ion battery pack as the research object, the finite element simulation was carried out by controlling the changes of battery spacing, convective heat transfer coefficient, and Phase Change Material ( PCM) thermal conductivity of lithium battery with different arrangement. The effects of cell spacing, convective heat transfer coefficient and PCM thermal conductivity on the temperature field of different battery arrays Rectangular, Quadrilateral, and Hexagonal Arrangement with phase change BTMS were studied. The results showed that when the battery spacing was 4 mm and 6 mm, the three had approximate maximum temperature, and when the battery spacing was 2 mm and 1 mm, the maximum temperature of the Rectangular Arrangement was the largest, for example, the maximum temperature rise of the Rectangular Arrangement was 105. 86% and 108. 25% of the Quadrilateral Arrangement and Hexagonal Arrangement, respectively. However, the temperature differences of the three components tended to decrease with the increase of the spacing. With different convective heat transfer coefficients, the maximum temperature of Rectangular Arrangement was always the largest while that of Quadrilateral Arrangement was the smallest. With the increase of convective heat transfer coefficient, the temperature difference among the three showed a trend of increasing. With the increase of the thermal conductivity of PCM, the maximum temperature of the three gradually decreased with a decreasing rate. With the five different thermal conductivity of PCM, the average maximum temperature rise of Rectangular Arrangement was 105. 31% and 106. 02% of that of Quadrilateral Arrangement and Hexagonal Arrangement, and the temperature difference of latent heat storage stage of the three decreased. In the sensible heat stage, the temperature difference between Rectangular Arrangement and Hexagonal Arrangement was not affected, but the temperature difference of Quadrilateral Arrangement increased continuously. Considering the highest temperature and temperature difference, the Hexagonal Arrangement lithium battery pack had the best thermal performance with PCM thermal management.

参考文献/References:

[1] LI X K, ZHAO J P, YUAN J L, et al. Simulation and analysis of air cooling configurations for a lithium-ion battery pack [ J ] . Journal of Energy Storage, 2021, 35: 102270. 

[2] ZHANG F R, WANG P W, YI M F. Design optimization of forced air-cooled lithium-ion battery module based on multi-vents [ J ] . Journal of Energy Storage, 2021, 40: 102781. 
[3] 宋俊杰, 王义春, 王腾. 动力电池组分层风冷式热管理 系统仿真[J]. 化工进展, 2017, 36(增刊 1): 187-194. 
SONG J J, WANG Y C, WANG T. Simulation of layered air cooling thermal management system for lithium-ion battery pack[ J] . Chemical Industry and Engineering Progress, 2017, 36( S1) : 187-194.
 [4] 刘瑞丽,高琼旻,马静,等. 定形相变板材制备及相变 墙体热 工 性 能 研 究 [ J] . 郑 州 大 学 学 报 ( 工 学 版 ) , 2021,42(4) :105-110. 
LIU R L,GAO Q M,MA J,et al. Study on preparation of shaped phase change sheet and thermal performance of phase change wall [ J] . Journal of Zhengzhou University (Engineering Science) ,2021,42(4) :105-110. 
[5] 员紫梦,刘单单,黄佳佳. 黏结剂对钾硫电池正极材料 性能的影响研究[ J] . 郑州大学学报( 工学版) ,2022, 43(6) :70-76. 
YUN Z M,LIU D D,HUANG J J. Effect of binders on the performance of span cathode for potassium-sulfur batteries [ J] . Journal of Zhengzhou University ( Engineering Science) ,2022,43(6) :70-76.
 [6] JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management [ J] . Applied Energy, 2014, 113: 1786-1794.
 [7] QIANZ, LI Y M, RAO Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling [ J] . Energy Conversion and Management, 2016, 126: 622-631.
 [8] PANCHAL S, KHASOW R, DINCER I, et al. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery[ J] . Applied Thermal Engineering, 2017, 122: 80-90.
 [9] HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehicle batteries using phasechange material[ J] . Journal of the Electrochemical Society, 2000, 147(9) : 3231-3236. 
[10] SABBAH R, KIZILEL R, SELMAN J R, et al. Active ( air-cooled) vs. passive ( phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution[ J] . Journal of Power Sources, 2008, 182( 2) : 630-638.
 [11] 张晓光, 潘晓楠, 李金铭, 等. 电池排布对锂电池组 相变热管理性能的影响[ J] . 储能科学与技术,2022, 11(1) : 127-135.
 ZHANG X G, PAN X N, LI J M, et al. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs[ J]. Energy Storage Science and Technology, 2022, 11(1): 127-135.
 [12] CHEN X, ZHOU F, YANG W, et al. A hybrid thermal management system with liquid cooling and composite phase change materials containing various expanded graphite contents for cylindrical lithium-ion batteries[ J] . Applied Thermal Engineering, 2022, 200: 117702. 
[13] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[ J] . Journal of the Electrochemical Society, 1985, 132(1) : 5-12.

相似文献/References:

[1]刘敏珊,许伟峰,靳遵龙.三角区漏流对螺旋折流板换热器综合性能的影响[J].郑州大学学报(工学版),2014,35(06):1.[doi:10.3969/ j. issn.1671 -6833.2014.06.001]
 LIU Min-shan,XU Wei-feng,JIN Zun-long,et al.Impact of Triangle Leakage on Comprehensive Performanceof Heat Exchangers with Helical Baffles[J].Journal of Zhengzhou University (Engineering Science),2014,35(02):1.[doi:10.3969/ j. issn.1671 -6833.2014.06.001]
[2]马强,朱健,邢文文,等.具有硬壳层的涵洞地基极限承载力分析[J].郑州大学学报(工学版),2016,37(01):70.[doi:10.3969/j.issn.1671-6833.201504039]
 Ma Qiang,Zhu Jian,Xing Wenwen,et al.[J].Journal of Zhengzhou University (Engineering Science),2016,37(02):70.[doi:10.3969/j.issn.1671-6833.201504039]
[3]钟委,端木维可,李华琳,等.火源横向位置对隧道火灾烟气分岔流动影响[J].郑州大学学报(工学版),2017,38(01):27.[doi:10.13705/j.issn.1671-6833.2016.04.023]
 Zhong Committee,Duanmu Weike,Li Hualin,et al.Numerical Investigation on the Influence of Different Transverse Fire Locations on Smoke Bifurcation Flow in Tunnel Fire[J].Journal of Zhengzhou University (Engineering Science),2017,38(02):27.[doi:10.13705/j.issn.1671-6833.2016.04.023]
[4]吴金星,王超,王明强,等.内置扭带管内湍流流动与传热数值模拟[J].郑州大学学报(工学版),2017,38(03):10.[doi:10.13705/j.issn.1671-6833.2016.06.018]
 Wu Jinxing,Wang Chao,Wang Mingqiang,et al.Numerical Simulation of Turbulent Fluid Flow and Heat Transfer in a Circular Tube with Twisted Tapes Inserts[J].Journal of Zhengzhou University (Engineering Science),2017,38(02):10.[doi:10.13705/j.issn.1671-6833.2016.06.018]
[5]周俊杰,王璞,周金方.基于ANSYS CFX的汽轮机叶片气动性能优化模拟研究[J].郑州大学学报(工学版),2017,38(04):1.[doi:10.13705/j.issn.1671-6833.2017.01.008]
 Zhou Junjie,Wang Pu,Zhou Jinfang.Study on Numerical Simulation of The Steam Turbine Blade Aerodynamic steam turbine increases.Performance Optimization Based on ANSYS CFX[J].Journal of Zhengzhou University (Engineering Science),2017,38(02):1.[doi:10.13705/j.issn.1671-6833.2017.01.008]
[6]窦明,曹亚新,米庆彬,等.地温空调井群运行对地下水影响的实验与模型研究[J].郑州大学学报(工学版),2017,38(05):76.[doi:10.13705/j.issn.1671-6833.2017.05.005]
 Dou Ming,Cao Yaxin,Mi Qingbin,et al.Groundwater Pumping-Recharging Influence Experiment and Numerical Simulation of Ground Temperature Air-conditioning Project in Fifth People’s Hospital, Anyang City[J].Journal of Zhengzhou University (Engineering Science),2017,38(02):76.[doi:10.13705/j.issn.1671-6833.2017.05.005]
[7]王为术,张雨飞,常娜娜.600MW火电机组间接空冷塔流动换热特性数值研究[J].郑州大学学报(工学版),2014,35(01):51.[doi:10.3969/j.issn.1671-6833.2014.01.012]
[8]黄锦耀,严诗伦,陈朝阳.EGR对二甲醚HCCI发动机燃烧特性的影响[J].郑州大学学报(工学版),2018,39(01):24.[doi:10.13705/j.issn.1671-6833.2018.01.010]
 Huang Jinyao,Yan Shilun,Chen Chaoyang.Effect of EGR on Combustion Performance of DME Fueled HCCI Engine[J].Journal of Zhengzhou University (Engineering Science),2018,39(02):24.[doi:10.13705/j.issn.1671-6833.2018.01.010]
[9]罗亚萍,邱兆文.氧化石墨烯-水和乙二醇混合基纳米流体对氢发动机散热影响研究[J].郑州大学学报(工学版),2018,39(04):25.[doi:1013705/j.issn.1671-68332018.04004]
 Luo Yaping,Qiu Zhaowen.Study on the Influence of Graphene Oxide-Water and Glycol Nanofluids on Heat Transfer of Hydrogen Engine[J].Journal of Zhengzhou University (Engineering Science),2018,39(02):25.[doi:1013705/j.issn.1671-68332018.04004]
[10]王建明,李潇潇.动车水箱疲劳振动试验及数值模拟研究[J].郑州大学学报(工学版),2019,40(01):72.[doi:10.13705/j.issn.1671-6833.2018.04.011]
 Wang Jianming,Li Xiaoxiao.Study on Vibration Fatigue Test and Numerical Simulation of EMU Tank[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):72.[doi:10.13705/j.issn.1671-6833.2018.04.011]

更新日期/Last Update: 2023-02-25