[1]靳遵龙,杨 磊,霍东方,等.瓦楞式固体氧化物燃料电池的结构优化[J].郑州大学学报(工学版),2023,44(04):35-40,53.[doi:10.13705/j.issn.1671-6833.2023.01.008]
 JIN Zunlong,YANG Lei,HUO Dongfang,et al.Optimization of Structure for MOLB-type Solid Oxide Fuel Cell[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):35-40,53.[doi:10.13705/j.issn.1671-6833.2023.01.008]
点击复制

瓦楞式固体氧化物燃料电池的结构优化()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
44卷
期数:
2023年04期
页码:
35-40,53
栏目:
出版日期:
2023-06-01

文章信息/Info

Title:
Optimization of Structure for MOLB-type Solid Oxide Fuel Cell
作者:
靳遵龙1杨 磊1 霍东方2刘 杨2樊晟两1
1.郑州大学 机械与动力工程学院,河南 郑州 450001, 2.华能河南中原燃气发电有限公司,河南 驻马店 463000

Author(s):
JIN Zunlong1 YANG Lei1 HUO Dongfang2 LIU Yang2 FAN Shengliang1
1.School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, 2.Henan, Huaneng Henan Zhongyuan Gas Power Power Co., Ltd., Henan Zhumadian 463000

关键词:
瓦楞式 SOFC 肋宽 阴极厚度 性能 活化极化
Keywords:
MOLB-type SOFC rib width cathode thickness performance activation polarization
分类号:
TM911.42
DOI:
10.13705/j.issn.1671-6833.2023.01.008
文献标志码:
A
摘要:
建立了瓦楞式固体氧化物燃料电池( SOFC) 三 维 模 型,并 基 于 有 限 元 方 法 对 其 进 行 了 模 拟 计 算。 针 对多孔电极内反应物分布不均、SOFC 输出性能受限 这 一 问 题,以 改 善 多 孔 电 极 内 物 质 的 传 输 和 提 升 电 池 的 输出功率为目标,考察了肋宽和阴极厚度对瓦楞式 SOFC 气体摩尔分数分布、温度分布、性能曲线以及极化损 失的影响。 结果表明:肋宽与阴极厚度的比值 λ 对 SOFC 多 孔 电 极 内 气 体 的 质 量 传 输,以 及 电 池 的 输 出 性 能 均有着重要影响:较小的肋宽有利于反应物在多孔 电 极 内 充 分 扩 散,可 以 改 善 气 体 分 布 的 均 匀 性、降 低 电 池 的浓差极化、提升电池输出性能;阴极厚度的增加则会 使 SOFC 温 度 升 高,从 而 使 活 化 极 化 降 低,电 池 的 性 能 得到优化。 考虑肋宽和阴极厚度对 SOFC 性能的协同影响 可 知,采 用 较 小 的 λ 值,可 以 改 善 电 极 内 气 体 分 布 的均匀性,使电池的总极化损失减 小,输 出 性 能 也 因 此 得 到 提 升。 λ 从 10 减 小 到 3. 33 时,电 池 的 最 大 平 均 功率密度提升了 53. 68% 。
Abstract:
A typical three-dimensional model of MOLB-type SOFC was developed, and the solution was based on the finite element method. In view of the problem of uneven distribution of reactants in porous electrode and limited output performance, the effects of rib widths and cathode thicknesses on the mole fraction distribution of gas, temperature distribution, performance curve and polarization of the MOLB-type SOFC were investigated with the aim of improving the mass transfer in the porous electrode and enhancing the output power. The results showed that the ratio of the rib width to the cathode thickness λ has an important effect on the mass transfer of gas in porous electrode and the output performance of the cell. The smaller rib width is conducive to the full diffusion of the reactants in the porous electrode, which can improve the uniformity of gas distribution, reduce the concentration polarization of the cell, and improve the output performance of SOFC. As the cathode thickness increases, the temperature of SOFC increases, which reduces the activation polarization and improves the performance of SOFC. Considering the synergistic effect of rib width and cathode thickness on SOFC performance, it is found that a small value of λ can improve the uniformity of the gas distribution in the electrode, reduce the total polarization loss of SOFC, and improve the output performance of the cell. When λ decreases from 10 to 3. 33, the maximum output power density of SOFC increases by 53. 68%.

参考文献/References:

[1] 田野, 杨嘉敏, 成少安, 等. 微生物燃料电池处理废水产电及其驱动监控系统的研究[J]. 郑州大学学报(工学版), 2018, 39(1): 90-96.TIAN Y, YANG J M, CHENG S A, et al. Using microbial fuel cell to dispose waste water to generate electric power and drive the monitoring system[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(1): 90-96.

[2] CRISALLE O D, 韩闯, 吴莉莉, 等. 质子交换膜燃料电池建模与控制研究进展[J]. 郑州大学学报(工学版), 2015, 36(6): 61-65.CRISALLE O D, HAN C, WU L L, et al. Review on modeling and control of proton exchange membrane fuel cell[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(6): 61-65.
[3] HWANG J J, CHEN C K, LAI D Y. Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC[J]. Journal of Power Sources, 2005, 140(2): 235-242.
[4] STYGAR M, BRYLEWSKI T, R KAS M. Effects of changes in MOLB-type SOFC cell geometry on temperature distribution and heat transfer rate in interconnects[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4421-4426.
[5] YANG Y Z, WANG G L, ZHANG H O, et al. Comparison of heat and mass transfer between planar and MOLB-type SOFCs[J]. Journal of Power Sources, 2008, 177(2): 426-433.
[6] RAM REZ-MINGUELA J J, RODR GUEZ-MU OZ J L, PÉREZ-GARC A V, et al. Solid oxide fuel cell numerical study: modified MOLB-type and simple planar geometries with internal reforming[J]. Electrochimica Acta, 2015, 159: 149-157.
[7] RAM REZ-MINGUELA J J, URIBE-RAM REZ A R, MENDOZA-MIRANDA J M, et al. Study of the entropy generation in a SOFC for different operating conditions[J]. International Journal of Hydrogen Energy, 2016, 41(21): 8978-8991.
[8] 靳遵龙, 杨友晨, 宫本希, 等. 瓦楞式固体氧化物燃料电池的数值研究[J]. 郑州大学学报(工学版), 2021, 42(6): 42-48.JIN Z L, YANG Y C, GONG B X, et al. Numerical study of mono-block-layer-built-type solid oxide fuel cell[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(6): 42-48.
[9] HUANG H Y, HAN Z, LU S Y, et al. The analysis of structure parameters of MOLB type solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20351-20359.
[10] KHAZAEE I, RAVA A. Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries[J]. Energy, 2017, 119: 235-244.
[11] ANDERSSON M, YUAN J, SUNDÉN B. SOFC cell design optimization using the finite element method based CFD approach[J]. Fuel Cells, 2014, 14(2): 177-188.
[12] RAM REZ-MINGUELA J, MENDOZA-MIRANDA J, RODR GUEZ-MU Z J, et al. Entropy generation analysis of a solid oxide fuel cell by computational fluid dynamics: influence of electrochemical model and its parameters[J]. Thermal Science, 2018, 22(1): 577-589.

更新日期/Last Update: 2023-06-30