[1]尹小春,卢耀辉,赵宏星,等.隧道工况下高速列车动态气密性数值分析方法[J].郑州大学学报(工学版),2022,43(05):52-58.[doi:10.13705/j.issn.1671-6833.2022.05.014]
 YIN Xiaochun,LU Yaohui,ZHAO Hongxing,et al.Numerical Analysis Method for Dynamic Air Tightness Value of High-speed Train[J].Journal of Zhengzhou University (Engineering Science),2022,43(05):52-58.[doi:10.13705/j.issn.1671-6833.2022.05.014]
点击复制

隧道工况下高速列车动态气密性数值分析方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年05期
页码:
52-58
栏目:
出版日期:
2022-08-22

文章信息/Info

Title:
Numerical Analysis Method for Dynamic Air Tightness Value of High-speed Train
作者:
尹小春 卢耀辉 赵宏星 史潇博 唐 波
西南交通大学机械工程学院;

Author(s):
YIN Xiaochun LU Yaohui ZHAO Hongxing SHI Xiaobo TANG Bo
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
关键词:
Keywords:
high-speed train dynamic air tightness numerical model tunnel intersection interior pressure
分类号:
U270. 1
DOI:
10.13705/j.issn.1671-6833.2022.05.014
文献标志码:
A
摘要:
高速列车通过隧道或者在隧道交会时,产生复杂的压缩波和膨胀波,由于车体不能完全密封,导致车内压力发生跟随性变化,引起乘客舒适度降低的问题。 通过建立高速列车车体内外流场的数值分析模型,在计算车体外表面压力波的基础上,以等效泄漏孔作为车体内外压力传递的接口研究车内压力的变化规律,提出了高速列车动态气密性指数计算方法。 首先,对比等效泄漏孔建模中长细比及位置对车内压力的影响,确 定了 包含等效泄漏孔的车体内外流场准确的数值模型;然后,建立了高速列车-隧道 CFD( computational fluid dynamics)模型,计算了高速列车隧道交会流场,获得了列车在隧道交会工况下车体外表面压力波;最后,将车体外表面压力波作为车体内外流场模型的激励,计算了车内压力变化,拟合数据后分析了车内压力变化率和动态气密指数,并与已有文献的实测数据进行了对比验证。 结果表明:等效泄漏孔的建模应采用长细比大于 1 ∶4的计算结果更合理;单节车气密性数值模型中泄漏孔的位置对车内压力影响不大;列车隧道会车工况下车体外流场大多处于负压状态,只有头车测点出现正压。 所提的车体 动态 气密 性分 析 模型 能 较 好 地 模 拟 车 内 压 力 波 动, 在 7. 05 cm2 等 效 泄 漏 面 积 和1 000 m 长隧道工况 下列车交会时 的动态气 密性指数仿 真计算结果为 66. 3,与已有文献结果接近。
Abstract:
When high-speed trains pass through or meet in the tunnel, complex compression and expansion waves will be generated. As the carbody cannot be completely sealed, the pressure inside the carbody will follow the changes, causing uncomfort problems for passengers. By establishing a numerical analysis model of the inlet and outlet flow field of high-speed trains, and on the basis of calculating the pressure waves on the surface of the vehicle, the change law of the internal pressure was studied by using the equivalent leakage hole as the interface for the pressure transmission inside and outside of the vehicle. And the calculation method of the dynamic air tightness index of the high-speed train was proposed. Firstly, the effects of slenderness and position on the interior pressure in the modeling of equivalent leakage hole were compared, and the accurate numerical model of the interior and exterior flow field with equivalent leakage hole was determined. Then, the computational fluid dynamics (CFD) model of high-speed train-tunnel intersection was established, and the flow field of high-speed train tunnel intersection was calculated, and the surface pressure wave of train was obtained. Finally, the external surface pressure wave was used as the excitation of the internal and external flow field of the model to calculate the internal pressure change. After fitting the data, the internal pressure change rate and dynamic airtight index were analyzed, and compared with the measured data in the literature. The results showed that the calculation results with slenderness greater than 1∶4 were more reasonable for the modeling of equivalent leakage holes. In the numerical model of air tightness of single vehicle, the location of leakage hole had little effect on the internal pressure. Most of the external flow fields of the train meeting in tunnel were in a negative pressure state, and only the head measurement points have positive pressure. The dynamic air tightness analysis model proposed in this paper could better simulate the pressure fluctuation inside the vehicle. The simulation result of dynamic air tightness index during train passing tunnel in the condition of 7.05 cm2 equivalent leakage area and 1 000 m long tunnel was 66.3, which was approximately consistent with the literature results.

参考文献/References:

[1] 张运良, 张志成, 杨伟超, 等. 高速列车隧道等速 交会条件 下 人 体 舒 适 度 分 析 [ J] . 郑 州 大 学 学 报 (工学版) , 2017, 38(2) : 26-29. 

ZHANG Y L, ZHANG Z C, YANG W C, et al. The human comfort degree analysis of high speed trains intersection at the same speed in the tunnel[ J] . Journal of Zhengzhou university ( engineering science) , 2017, 38(2) : 26-29. 
[2] 梅元贵, 周朝晖. 高速列车通过隧道时诱发车厢内 压力波 动 的 数 值 分 析 [ J ] . 铁 道 学 报, 2005, 27 (5) : 36-40. 
MEI Y G, ZHOU C H. Numerical analysis of transient pressures inside high speed passenger trains through tunnels [ J ] . Journal of the China railway society, 2005, 27(5) : 36-40. 
[3] 梅元贵, 张成玉, 周朝晖, 等. 单列高速列车通过 特长隧道 时 耳 感 不 适 问 题 研 究 [ J] . 机 械 工 程 学 报, 2015, 51(14) : 100-107. 
MEI Y G, ZHANG C Y, ZHOU C H, et al. Research on the aural discomfort when a single train passes through a super long tunnel[ J] . Journal of mechanical engineering, 2015, 51(14) : 100-107. 
[4] 陈春俊, 聂 锡 成, 唐 猛. 车 外 空 气 压 力 作 用 下 的 CRH2 型动车组车内空气压力传递函数模型 [ J] . 中国铁道科学, 2013, 34(4) : 84-88. 
CHEN C J, NIE X C, TANG M. Transfer function model of the air pressure inside CRH2 EMU under outside air pressure[ J] . China railway science, 2013, 34 (4) : 84-88.
[5] 张相, 梅元贵, 周朝晖. 高速列车车内压力波动值 计算方法初探[ J] . 铁道机车车辆, 2008, 28( 4) : 33-35. 
ZHANG X, MEI Y G, ZHOU C H. Calculating meth- od of pressure change inside high speed train [ J ] . Railway locomotive & car, 2008, 28(4) : 33-35. 
[6] 邵焕霞, 梅元贵, 周朝晖. 高速空调客车通过隧道 时车内压力波数值方法初探[ J] . 铁道机车车辆, 2006, 26(1) : 31-33. 
SHAO H X, MEI Y G, ZHOU C H. Study on numerical simulation of pressure changes inside high-speed air-conditioned train passing through tunnels [ J ] . Railway locomotive & car, 2006, 26(1) : 31-33.
[7] 张光鹏, 雷波. 计算高速列车车内压力的热力学模 型[ J] . 铁道学报, 2006, 28(1) : 35-38. 
ZHANG G P, LEI B. The thermal dynamics model for calculating the interior pressure of high-speed trains [ J] . Journal of the China railway society, 2006, 28 (1) : 35-38. 
[8] NAM S W. A study on estimation of air tightness for train[ J] . Journal of the Korean society for railway, 2016, 19(5) : 576-584.
[9] 王建宇, 吴剑, 万晓燕. 车辆的密封性及瞬变压力 向列车内传递规律[ J] . 现代隧道技术, 2009, 46 (3) : 12-16. 
WANG J Y, WU J, WAN X Y. Airtightness of carriages and the law of transient pressure transfering into the train[ J] . Modern tunnelling technology, 2009, 46 (3) : 12-16.
[10] 马瑶, 王雷, 梅元贵. 速度 350 km / h 高速列车车体 时间常数气密阈值特性初探[ J] . 铁道机车车辆, 2019, 39(5) : 47-52, 69. 
MA Y, WANG L, MEI Y G. Study on air-tightness coefficient threshold characteristics of CR400BF EMUs in mountain tunnels at speed of 350 km / h[ J] . Railway locomotive & car, 2019, 39(5) : 47-52, 69.
[11] 张芯茹, 余以正, 梅元贵. 更高速度下京沪高铁列 车整车时间常数动态气密性阈值初探[ J] . 铁道机 车车辆, 2019, 39(2) : 113-118. 
ZHANG X R, YU Y Z, MEI Y G. Preliminary study on dynamic air tightness threshold of time constant of Beijing-Shanghai high-speed railway train at higher speed[ J] . Railway locomotive & car, 2019, 39( 2) : 113-118.
[12] 万有财, 李明, 张雷, 等. 京沪高铁隧道背景下列 车车体动态气密性当量泄漏面积阈值特征[ J] . 振 动与冲击, 2021, 40(1) : 29-38. 
WAN Y C, LI M, ZHANG L, et al. Threshold characteristics of equivalent leakage area of train body dynamic air tightness under background of Beijing-Shanghai high speed railway tunnels[ J] . Journal of vibration and shock, 2021, 40(1) : 29-38.
[13] 李田, 戴志远, 张继业, 等. 列车气密性静态泄漏 理论模型与计算 [ J] . 交 通 运 输 工 程 学 报, 2020, 20(1) : 150-158. 
LI T, DAI Z Y, ZHANG J Y, et al. Theoretical model and calculation of static leakage for train air tightness [ J] . Journal of traffic and transportation engineering, 2020, 20(1) : 150-158. 
[14] LIU T H, CHEN X D, LI W H, et al. Field study on the interior pressure variations in high-speed trains passing through tunnels of different lengths[ J] . Journal of wind engineering and industrial aerodynamics, 2017, 169: 54-66.
[15] LIU T H, GENG S G, CHEN X D, et al. Numerical analysis on the dynamic airtightness of a railway vehicle passing through tunnels[ J] . Tunnelling and underground space technology, 2020, 97: 103286. 
[16] 李明, 张雷, 刘斌, 等. 动静态气密性分析方法及 其在动 车 组 上 的 应 用 [ J ] . 力 学 学 报, 2021, 53 (1) : 126-135. 
LI M, ZHANG L, LIU B, et al. Dynamic and static air tightness analysis method and their application in emu [ J ] . Chinese journal of theoretical and applied mechanics, 2021, 53(1) : 126-135. 
[17] 李玉洁, 梅元贵. 动车组车辆气密性指标的初步探 讨[ J] . 铁道机车车辆, 2009, 29(2) : 31-35.
 LI Y J, MEI Y G. Primary discussion about pressure tightness of electric mutiple units[ J] . Railway locomotive & car, 2009, 29(2) : 31-35. 
[18] LU Y H, ZHANG D W, ZHENG H Y, et al. Analysis of the aerodynamic pressure effect on the fatigue strength of the carbody of high-speed trains passing by each other in a tunnel[ J] . Proceedings of the institution of mechanical engineers, part F: journal of rail and rapid transit, 2019, 233(8) : 783-801.

更新日期/Last Update: 2022-08-20