[1]孙 超,张振洲,陈宝见,等.Na 对 Fe-Zn 催化剂结构及 CO2 加氢制烯烃的影响[J].郑州大学学报(工学版),2022,43(04):97-103.[doi:10.13705/j.issn.1671-6833.2022.01.009]
 SUN Chao,ZHANG Zhenzhou,CHEN Baojian,et al.Effects of Na on Structure of Fe-Zn Catalysts and Their Consequences for Olefins Formation during CO2 Hydrogenation[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):97-103.[doi:10.13705/j.issn.1671-6833.2022.01.009]
点击复制

Na 对 Fe-Zn 催化剂结构及 CO2 加氢制烯烃的影响()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年04期
页码:
97-103
栏目:
出版日期:
2022-07-03

文章信息/Info

Title:
Effects of Na on Structure of Fe-Zn Catalysts and Their Consequences for Olefins Formation during CO2 Hydrogenation
作者:
孙 超 张振洲 陈宝见 杜春丽 涂维峰
郑州大学化工学院;

Author(s):
SUN ChaoZHANG ZhenzhouCHEN BaojianDU ChunliTU Weifeng
School of Chemical Engineering,Zhengzhou University,Zhengzhou 450001,China
关键词:
Keywords:
carbon dioxideolefinsalkali metaliron specieshydrogenation
分类号:
TQ426;TQ221. 2
DOI:
10.13705/j.issn.1671-6833.2022.01.009
文献标志码:
A
摘要:
二氧化碳加氢制备烯烃是实现二氧化碳转化的有效途径之一,二氧化碳先后通过逆水煤气反应和费托合成反应生成高附加值产品。 铁基催化剂具有很好的逆水煤气以及费托合成活性,然而 CO2 加氢制备烯烃过程中存在多种副反应,导致烯烃选择性较低。 如何提高铁基催化剂性能成为工业化的重要问题。 通过定量浸渍法制备一系列不同 Na 含量的 Fe-Zn 催化剂,采用稳态反应速率测定、原位 X 射线光电子能谱( In-situ XPS) 、原位 X 射线衍射( In-situ XRD) 以及原位漫反射红外傅里叶变换光谱( In- situ DRIFTS) 技术,探究碱金属 Na 对铁基催化剂结构及 CO2 加氢直接合成烯烃活性的影响。 研究发现:在 Fe-Zn 催化剂 CO 还原过程与 CO2 加氢反应过程中,碱金属 Na 的引入导致 Fe3 O4 含量降低,Fe5 C2 含量提高,表明碱金属 Na 有利于 Fe5 C2 生成, 同时 XPS 结果表明 Na 与 Fe5 C2 之间存在电子转移, 导致Fe5 C2 电子云密度增大,不利于烯烃二次加氢反应, 提高了烯烃与烷烃的比例; 此外 Na 可以调节表面CH x ∗ 物种比例,随着 Na 含量的提高,表面 CH∗ 与 CH2 ∗ 之间的比例增大,导致表面 CH∗ 物种的相对增加,有利于提高 C-C 耦合能力;Na 的引入可以提高 Fe-Zn 催化剂催化 CO2 加氢合成烯烃的性能,在温度 593 K 和反应压力 1. 5 MPa 时,CO2 转化率可达到 35% ,碳氢化合物中烯烃选择性高达 65% ,烯烷比大于6,且 CO 选择性较低为 18% 。
Abstract:
Formation of olefins directly from CO2 hydrogenation is one of the effective and valuable routs for utilization.Formation of high value-added products directly from CO2-H2 mixtures may occur via a combination of reverse water-gas-shift (RWGS) reaction and Fisher-Tropsch (FT) synthesis over Fe based catalysts.This route produces by-products,which leads to a complex reaction system and low olefins selectivity.In this stu-dy,a series of Fe-Zn catalysts with Na were synthesized to get a deep insight into the effects of Na on the catalytic hydrogenation of CO2 and the structures of Fe-Zn catalyst at working state,by steady-state rate measurements,In-situ X-ray diffraction (In-situ XRD),In-situ X-ray photoelectron spectroscopy (In-situ XPS),In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ DRIFTS).Decorating with Na facilitated the formation of Fe5C2.Electron transfer occured between Na and Fe5C2,resulting in the increase of electron density of Fe sites,which was not conducive to the secondary hydrogenation of olefin and improved the ratio of olefin to alkane.Decorating with Na facilitated C-C coupling by regulating the proportion of surface CH* species.The results showed that the Na exhibited the best catalytic performance for CO2 hydrogenation to olefins at 593 K and 1.5 MPa.the selectivity of olefins in hydrocarbons was as high as 65%,the O/P ratio was up to 6,and the CO selectivity was below 18%.

参考文献/References:

[1] 魏冉. 基于 LSDV 估计法的中国主要品种能源消费 影响碳排放强度效应分析[ J] . 郑州大学学报( 工学 版) ,2019,40(2) :87-91. 

WEI R. The impact evaluation of the consumption of main types of energy in China on carbon emission intensity based on LSDV estimation [ J ] . Journal of Zhengzhou university ( engineering science ) , 2019, 40(2) : 87-91. 
[2] 巩金龙. CO2 化 学 转 化 研 究 进 展 概 述 [ J] . 化 工 学 报,2017,68(4) :1282-1285. 
GONG J L. A brief overview on recent progress on chemical conversion of CO2 [ J ] . CIESC journal, 2017, 68(4) : 1282-1285. 
[3] 刘洋洋,孙超,SINGH M H,等. 载体对铁基催化剂 结构及 CO2 加氢制烯烃反应性能的影响特性[ J] . 化工学报,2020,71(10) :4652-4662. 
LIU Y Y, SUN C, SINGH M H, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins [ J ] . CIESC journal, 2020, 71 ( 10 ) : 4652 -4662.
 [4] 张玉龙,邵光印,张征湃,等. 活化气氛对 CO2 加氢 制取低碳烯烃 Fe-K 催化剂构-效关系[ J] . 化工学 报,2018,69(2) :690-698. 
ZHANG Y L, SHAO G Y, ZHANG Z P, et al. Activation atmospheres on structure-performance relationship of K-promoted Fe catalysts for lower olefin synthesis from CO2 hydrogenation [ J]. CIESC journal, 2018, 69 ( 2): 690-698.
 [5] ZHU J,ZHANG G H,LI W H,et al. Deconvolution of the particle size effect on CO2 hydrogenation over ironbased catalysts[ J] . ACS catalysis,2020,10(13) :7424 -7433. 
[6] 尹浩人. 碱金属和过渡金属修饰的 Fe 基催化剂用 于 CO2 加 氢 制 烯 烃 的 研 究 [ D ] . 厦 门: 厦 门 大 学,2020. 
YIN H R. Study on alkali metal and transition metal modified Fe based catalysts for CO2 hydrogenation to olefins[D] . Xiamen:Xiamen University,2020.
 [7] 贺德华,朱起明,徐强,等. Cu-Fe 混合氧化物催化 剂上碱金属 Na 对 CO2 加氢反应的影响[ J] . 天然 气化工, 1997, 22(6) :1-5.
 HE D H, ZHU Q M, XU Q, et al. Effect of Na in a Cu Fe mixed oxide catalyst on CO2 hydrogenation[ J] . Natural gas chemical industry, 1997, 22(6) : 1-5.
 [8] DORNER R W,HARDY D R,WILLIAMS F W,et al. K and Mn doped iron-based CO2 hydrogenation catalysts:detection of KAlH4 as part of the catalyst′s active phase[ J ] . Applied catalysis A: general, 2010, 373 (1 / 2) :112-121.
 [9] ZHANG C,CAO C X,ZHANG Y L, et al. Unraveling the role of zinc on bimetallic Fe5C2 -ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon α-olefins [ J ] . ACS catalysis, 2021, 11 ( 4 ) : 2121-2133. 
[10] HAN Y,FANG C Y,JI X W,et al. Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron [ J ] . ACS catalysis, 2020, 10 (20) : 12098-12108.
 [11] YANG S,CHUN H J,LEE S,et al. Comparative study of olefin production from CO and CO2 using Na-and K-promoted zinc ferrite [ J] . ACS catalysis, 2020, 10 (18) : 10742-10759. 
[12] RAMIREZ A,GEVERS L,BAVYKINA A,et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins [ J] . ACS catalysis,2018,8(10) :9174-9182.
 [13] YAMASHITA T,HAYES P. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials[ J] . Applied surface science,2008,254(8) :2441-2449.
 [14] TIAN H L,FAN H Q,MA J W,et al. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing[ J] . Journal of hazardous materials,2018,341:102 -111.
 [15] MA L T,FAN H Q,FU K,et al. Protonation of graphitic carbon nitride ( g-C3N4 ) for an electrostatically selfassembling carbon @ g-C3N4 core-shell nanostructure toward high hydrogen evolution [ J ] . ACS sustainable chemistry & engineering,2017,5(8) :7093-7103.
 [16] FANG J W, FAN H Q, LI M M, et al. Nitrogen selfdoped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution [ J ] . Journal of materials chemistry A,2015,3(26) :13819-13826.
 [17] ZHAI P,XU C,GAO R,et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodiummodulated Fe5C2 catalyst[ J] . Angewandte Chemie international edition,2016,55(34) :9902-9907.
 [18] NIE X W,WANG H Z,JANIK M J,et al. Mechanistic insight into C-C coupling over Fe-Cu bimetallic catalysts in CO2 hydrogenation[ J] . The journal of physical chemistry C,2017,121(24) :13164-13174.

更新日期/Last Update: 2022-07-03