[1]张先乐,刘自豪,黄 浩,等.In2 O3 / TiO2 室温氢气传感器及其优异的氢敏性能[J].郑州大学学报(工学版),2022,43(04):104-110.[doi:10.13705/j.issn.1671-6833.2022.04.001]
 ZHANG Xianle,LIU Zihao,HUANG Hao,et al.Research of In2O3/TiO2 Room Temperature Hydrogen Sensors and Its Excellent Hydrogen Sensitivity[J].Journal of Zhengzhou University (Engineering Science),2022,43(04):104-110.[doi:10.13705/j.issn.1671-6833.2022.04.001]
点击复制

In2 O3 / TiO2 室温氢气传感器及其优异的氢敏性能()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
43
期数:
2022年04期
页码:
104-110
栏目:
出版日期:
2022-07-03

文章信息/Info

Title:
Research of In2O3/TiO2 Room Temperature Hydrogen Sensors and Its Excellent Hydrogen Sensitivity
作者:
张先乐 刘自豪 黄 浩 范佳杰
郑州大学材料科学与工程学院;

Author(s):
ZHANG XianleLIU ZihaoHUANG HaoFAN Jiajie
School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001
关键词:
Keywords:
In2O3/TiO2composite hydrogen sensorroom temperaturerecovery performance
分类号:
O649. 4
DOI:
10.13705/j.issn.1671-6833.2022.04.001
文献标志码:
A
摘要:
为改善纳米 TiO2 传感器在室温下对 H2 虽有快速响应但恢复过慢的问题,引入商业纳米 In2 O3 对其进行改性。 分别采用压片法和阳极氧化-沉积法制备了 In2 O3 / TiO2 纳米复合压片薄膜和 In2 O3 / TiO2 纳米管阵列,并将其应用于氢气传感器,研究了其室温氢敏性能。 采用扫描电镜、X 射线衍射、比表面积测试等方法对样品进行了表征,并研究了不同电极( Ag、Pt、Pd) 、不同热处理温度及不同质量分数的 In2 O3 对复合传感器室温氢敏性能的影响。 结果表明,与纯 TiO2 传感器相比,复合传感器扩大了氢气的检测范围,室温下可检测到体积分数 1× 10 - 6 ~ 1× 10 - 3 的氢气,且恢复时间大大缩短。 其中,以 Pt 为电极,经 600 ℃ 退火的质量分数为 20% 的 In2 O3 / TiO2 复合传感器表现出最优的氢敏性能,在室温下对体积分数 1× 10 - 6 H2 的响应时间为 7 s,恢复时间为 32 s。
Abstract:
In order to solve the problem that the nano-TiO2 sensor had a fast response to H2,but the recovery was too slow at room temperature,commercial nano-In2O3 was introduced to modify it.In2O3/TiO2 nanocomposite pressed films and In2O3/TiO2 nanotube arrays were prepared by pressing method and anodic oxidation-deposition method,respectively.They were applied to hydrogen sensors,and their hydrogen sensitivity were studied at room temperature.The samples were characterized by scanning electron microscopy,X-ray diffraction and specific surface area measurement.And the effects of different electrodes (Ag,Pt,Pd),different heat treatment temperatures and different In2O3/TiO2 mass fractions on the hydrogen sensitivity of the sensors at room temperature were studied.It was found that compared with the pure TiO2 sensor,the composite sensor expanded the detection range of hydrogen,and could detect 1×10-6-1×10-3 hydrogen at room temperature,and the recovery time was greatly shortened.Among them,the In2O3/TiO2 composite sensor with a mass fraction of 20% and annealed at 600 ℃ with Pt as the electrode exhibited the best hydrogen sensitivity.At room temperature,the response time to 1×10-6 H2 was 7 s,and the recovery time is 32 s.

参考文献/References:

[1] 黄浩. In2O3 / 纳米 TiO2 复合氢气传感器的制备与性 能增强[D] . 郑州:郑州大学,2018.

 HUANG H. Preparation and enhanced properties of In2O3 / nano-TiO2 composite hydrogen sensors [ D ] . Zhengzhou: Zhengzhou University, 2018.
[2] DEY A. Semiconductor metal oxide gas sensors: a review[ J] . Materials science and engineering:B,2018, 229:206-217.
[3] BUTLER M A. Optical fiber hydrogen sensor[ J] . Applied physics letters,1984,45(10) :1007-1009.
[4] TARDY P, COULON J R, LUCAT C, et al. Dynamic thermal conductivity sensor for gas detection[ J] . Sensors and actuators B:chemical,2004,98(1) :63-68.
[5] OROTCENKOV G,CHO B K. Metal oxide composites in conductometric gas sensors:achievements and challenges[ J] . Sensors and actuators B: chemical, 2017, 244:182-210.
[6] RAN H L,HUANG H,MA M J, et al. Dye-sensitized solar cells based on double-layer composite film with enhanced photovoltaic performance[ J] . Journal of inorganic materials,2017,32(10) :1049. 
[7] LIU Y Q,RAN H L, FAN J J, et al. Fabrication and photovoltaic performance of niobium doped TiO2 hierarchical microspheres with exposed { 001 } facets and high specific surface area [ J ] . Applied surface science,2017,410:241-248.
[8] VARGHESE O K,GONG D, PAULOSE M, et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure[ J] . Advanced materials,2003,15(7 / 8) :624-627.
[9] ESFANDIAR A,GHASEMI S,IRAJIZAD A,et al. The decoration of TiO2 / reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing[ J] . International journal of hydrogen energy, 2012, 37 ( 20 ) : 15423-15432. 
[10] 马梦君. 基于 n 型氧化物半导体 TiO2 和 CeO2 的氢 气传感器研究[D] . 郑州:郑州大学,2019. 
MA M J. Hydrogen sensors based on N-type oxide semiconductor TiO2 and CeO2 [ D ] . Zhengzhou: Zhengzhou University, 2019.
[11] 吕国栋. Pd 纳米环 / TiO2 纳米管复合结构的工艺调 控及氢敏性能研究[D] . 成都:电子科技大学,2018. 
LYU G D. Process regulation and hydrogen sensing properties of Pd nano-ring / TiO2 nanotube composite structures[D] . Chengdu: University of Electronic Science and Technology of China, 2018. 
[12] CHEN Y,XU P C,LI X X,et al. High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material[ J] . Sensors and actuators B:chemical,2018,267:83-92.
[13] LI Z J,YAN S N,WU Z L,et al. Hydrogen gas sensor based on mesoporous In2O3 with fast response / recovery and ppb level detection limit[ J] . International journal of hydrogen energy,2018,43(50) :22746-22755. 
[14] ABIDEEN Z U,KIM J H,LEE J H,et al. Electrospun metal oxide composite nanofibers gas sensors:a review [ J] . Journal of the Korean ceramic society, 2017, 54 (5) :366-379.
[15] ZAPPA D, GALSTYAN V, KAUR N, et al. “ Metal oxide-based heterostructures for gas sensors” :a review [ J] . Analytica chimica acta,2018,1039:1-23.
[16] LUO Y F, ZHANG C, ZHENG B B, et al. Hydrogen sensors based on noble metal doped metal-oxide semiconductor:a review[ J] . International journal of hydrogen energy,2017,42(31) :20386-20397. 
[17] DEAN B,HAASZ A A,STANGEBY P C. Sticking coefficient of molecular and atomic hydrogen on palladium[ J] . Journal of vacuum science & technology A: vacuum,surfaces,and films,1987,5(4) :2332-2335. 
[18] 申乾宏,黎胜,宗建娟,等. 光催化制备结晶 TiO2 介 孔薄膜 及 其 性 能 表 征 [ J] . 硅 酸 盐 学 报, 2010, 38 (1) :158-162. 
SHEN Q H, LI S, ZONG J J, et al. Preparation and characterization of mesoporous titania crystalline film via photocatalysis[ J] . Journal of the Chinese ceramic society, 2010, 38(1) : 158-162

更新日期/Last Update: 2022-07-03