[1]南姣芬,孟攀婷,童志航,等.基于大脑磁共振成像的多模态多层次信息融合方法[J].郑州大学学报(工学版),2021,42(04):26-32.
 A multi-level information fusion method ba<x>sed on multi-mode magnetic resonance imaging of human brain[J].Journal of Zhengzhou University (Engineering Science),2021,42(04):26-32.
点击复制

基于大脑磁共振成像的多模态多层次信息融合方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42
期数:
2021年04期
页码:
26-32
栏目:
出版日期:
2021-07-30

文章信息/Info

Title:
A multi-level information fusion method ba<x>sed on multi-mode magnetic resonance imaging of human brain
作者:
南姣芬孟攀婷童志航张金灿
文献标志码:
A
摘要:
人类大脑的研究对揭示很多疾病的病理学机制存在重要价值,而单模态成像的研究在揭示大脑信息方面具有很大的片面性,因此越来越多的研究人员利用多影像数据间的交叉信息探索大脑奥秘。本文通过多层次特征计算对MCCA + jICA融合技术进行改进,提出一种基于无监督的多层次多模态人脑磁共振图像融合方法。模拟数据结果显示,与现在较为流行MCCA + jICA以及MCCAR + jICA相比,本文方法不仅在检测大脑多模态磁共振图像之间的共变成分上表现良好,还具有更高的稳定性。该方法的提出对更全面地探索大脑奥秘及相关疾病复杂机制具有重要的意义。
Abstract:
The human brain is of great value in revealing the pathological mechanisms of many diseases, but the study of single modal imaging has a great one-sidedness in revealing brain information. Therefore, more and more researchers use the cross-information among multiple kinds of imaging data to explore the mysteries of the brain. In this paper, the fusion technique of MCCA + jICA is improved through multi-level feature calculation, thereby providing a multi-level and multi-mode fusion method of human brain magnetic resonance imaging data ba<x>sed on unsupervised. The simulation results show that the method presented in this paper not only performs well in detecting the covariant components between brain multimodal MRI images, but also has higher stability, compared with the popular MCCA + jICA and MCCAR + jICA. The method is of great significance to explore the brain mysteries and comprehensive mechanisms of brain-related diseases
更新日期/Last Update: 2021-08-26