[1]李洋,郑艳萍,梁帅,等.微流控材料环烯烃共聚物(COC)疏水性恢复实验研究[J].郑州大学学报(工学版),2021,42(03):81.[doi:10.13705/j.issn.1671-6833.2021.03.014]
 Li Yang,Zheng Yanping,Liang Shuai,et al.Micrological Materials Circinomyfin Polymer (COC) hydrophobic recovery experimental research[J].Journal of Zhengzhou University (Engineering Science),2021,42(03):81.[doi:10.13705/j.issn.1671-6833.2021.03.014]
点击复制

微流控材料环烯烃共聚物(COC)疏水性恢复实验研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
42卷
期数:
2021年03期
页码:
81
栏目:
出版日期:
2021-05-10

文章信息/Info

Title:
Micrological Materials Circinomyfin Polymer (COC) hydrophobic recovery experimental research

作者:
李洋 郑艳萍 梁帅 舒海涛 刘悦 徐刚
郑州大学机械与动力工程学院;广东顺德创新设计研究院;浙江大学材料科学与工程学院;

Author(s):
Li Yang; Zheng Yanping; Liang Shuai; Shu Haitao; Liu Yue; Xu Gang;
School of Mechanical and Power Engineering, Zhengzhou University; Institute of Innovation and Design of Guangdong Shunde; School of Materials Science and Engineering, Zhejiang University;

关键词:
Keywords:
DOI:
10.13705/j.issn.1671-6833.2021.03.014
文献标志码:
A
摘要:
为了在不影响微流控芯片功能的前提下提高芯片的结构稳定性,对芯片材料环烯烃共聚物(C0C) 进行表面研究。因空气等离子体处理后的C0C高亲水性表面具有明显的时效性,通过调整等离子体清洗功率、时间、放置温度等参数,利用亲水处理后的时效性,实现了C0C疏水性的恢复,并通过正交试验得到芯片微滴成功生成的最佳参数组合。结果表明:使用该方法后,C0C表面接触角实现了从90°到25°±2.1。再到83°±1.5。的亲疏水转换键合强度由不稳定提升0.051MPax光电子能谱与傅里叶红外光谱显示该处理过程仅对表面改性,不会影响到材料本身的深层结构,键合强度提高的主要原因是羟基、羧基、羰基等含氧官能团的引入,最后通过微滴生成实验验证了所提方法在微流控装置中应用的可行性。
Abstract:
In order to improve the structural stability of the chip without affecting the function of the chip, the surface of the chip material COC( cyclic olefin copolymer) was studied. The highly hydrophilic surface of COC material after air plasma treatment has obvious timeliness. By adjusting parameters such as plasma cleaning power , time and placement temperature ,the timeliness after hydrophilic treatment could be amplified and the recovery of COC hydrophobicity could be realized. The experimental results showed that: using this method ,the contact angle of COC surface changed from 90° to 25°+2.1° and then to 83°士1.5°. The bonding strength increased from instability to 0.051 MPa. X -ray photoelectron spectroscopy ( XPS) and Fourier transform infra-red spectroscopy ( FTIR) showed that the treatment process only modified the surface and did not affect the deep structure of the material itself. The main reason for the improvement of bonding strength was the introduction of oxygen-containing functional groups such as hydroxyl,carboxyl and carbonyl. Finally , the feasibility of this method in microfluidic devices was verified by droplet generation experiments.
更新日期/Last Update: 2021-06-24