[1]张颖超,成金杰,邓华,等.基于相似日和特征提取的短期风电功率预测[J].郑州大学学报(工学版),2020,41(05):44-49.
点击复制

基于相似日和特征提取的短期风电功率预测()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
41
期数:
2020年05期
页码:
44-49
栏目:
出版日期:
2020-10-01

文章信息/Info

Title:
Short-Term Wind Power Prediction Based on Similar Day and Feature Extraction
作者:
张颖超成金杰邓华宗阳章璇
文献标志码:
A
摘要:
为提高短期风电功率预测精度,增强预测模型对特定天气状况的代表性和适应性,提出一种基于离散Fréchet距离与核熵成分分析(KECA)相结合的数据处理方法。通过引入离散Fréchet距离,建立匹配相似日的数学模型,提取与预测日相似的样本,使用KECA从多种气象要素中提取合适的非线性主.元作为支持向量机(SVM)模型的输入。实验结果表明:所提出的方法明显提高了预测精度并具有一定的适用性
Abstract:
In order to improve the short-term wind power prediction accuracy and enhance the representativeness and adaptability of the prediction model to specific weather conditions, a data processing method was pro-posed based on discrete Fréchet distance and kernel entropy component analysis (KECA) .Using Fréchet distance, this paper established a mathematical model matching similar days, extracted samples similar to the prediction date, and then used KECA to extract suitable nonlinear principal elements from various meteorological elements as input of support vector machine (SVM) model. The simulation verification showed that the proposed method could significantly improve the prediction’s accuracy and has certain applicability.
更新日期/Last Update: 2020-10-23