[1]胡国勤,孙芳星,刘景辉,等.超临界溶液快速膨胀法制备盐酸氟桂利嗪微粒的研究[J].郑州大学学报(工学版),2019,40(06):57-61.
点击复制

超临界溶液快速膨胀法制备盐酸氟桂利嗪微粒的研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年06期
页码:
57-61
栏目:
出版日期:
2019-11-16

文章信息/Info

Title:
Formation of Flunarizine Hydrochloride Particles via Rapid Expansion of Supercritical Solution Process
作者:
胡国勤;孙芳星;刘景辉;陈鹏丽
文献标志码:
A
摘要:
采用超临界溶液快速膨胀法制备盐酸氟桂利嗪药物超细微粒,研究了RESS过程中平衡釜温度、平衡釜压力、收集釜温度、喷嘴温度、喷嘴直径以及夹带剂的浓度对药物微粒的大小以及形态的影响。采用光学显微镜、扫描电镜、红外光谱、X射线衍射、热重对药物微粒进行了分析表征。结果表明:采用RESS法成功制备了粒径小且分布均匀的球型或类球型盐酸氟桂利嗪超细微粒,平均直径为2.285μm~6.893μm;RESS过程前后盐酸氟桂利嗪药物微粒物理化学性质、晶体结构基本保持稳定。
Abstract:
In this study, FH is micronized via Supercritical solution rapid expansion process (RESS) to improve its dissolution rate of drug in the biological environment. And the effects of the process parameters such as the temperature and the pressure of equilibrium cell, the temperature of the collection vessel, the temperature of the nozzle, the diameter of the nozzle and the concentration of the entrainer on the size and morphology of the drug particles were investigated.The particles before and after RESS were characterized by optical microscopy,scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetry (TGA). Test results show that microparticles of FH was successfully performed by using RESS and The average particle size of Flourarizine Hydrochloride were in the range of 1.285μm to 6.893μm. The results of FT-IR, XRD, and TG-DSC indicate that the physical and chemical properties of flunarizine hydrochloride particles remained stable before and after the RESS process
更新日期/Last Update: 2019-11-25