[1]朱春峰,刘琦,李东坤,等.一种基于ODDT的FDES复合因果链层次化解耦方法[J].郑州大学学报(工学版),2019,40(04):13.[doi:10.13705/j.issn.1671-6833.2019.04.030]
 Zhu Chunfeng,Liu Qi,Lee Dongkun,et al.A Hierarchical Decoupling Method of FDES Compound Causality Chain Based on ODDT[J].Journal of Zhengzhou University (Engineering Science),2019,40(04):13.[doi:10.13705/j.issn.1671-6833.2019.04.030]
点击复制

一种基于ODDT的FDES复合因果链层次化解耦方法()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年04期
页码:
13
栏目:
出版日期:
2019-07-10

文章信息/Info

Title:
A Hierarchical Decoupling Method of FDES Compound Causality Chain Based on ODDT
作者:
朱春峰1刘琦2李东坤2徐巍3
1. 陆军炮兵防空兵学院郑州校区;2. 郑州大学软件技术学院;3. 中国铁路北京局集团公司北京西站设备和信息化科
Author(s):
Zhu Chunfeng 1Liu Qi 2Lee Dongkun 2Xu Wei 3
1. Zhengzhou Campus, Army Artillery and Air Defense Academy; 2. Software Technology College, Zhengzhou University; 3. Beijing West Railway Station Equipment and Information Department, China Railway Beijing Bureau Group Corporation
关键词:
FDES不确定性时间约束因果链解耦
Keywords:
FDESUncertaintytime constraintsCausal chain decoupling
DOI:
10.13705/j.issn.1671-6833.2019.04.030
文献标志码:
A
摘要:
针对复杂系统结构中模糊因果关系与不精确的信息相耦合所产生的状态爆炸问题,本文提出一种基于ODDT的FDES复合因果链层次化解耦方法。该方法首先构造了一种用于在时间约束下复合因果链解耦的Petri网模型(TC-PPN),随后以合并状态信息和时序信息为基础,通过构造观测信息的时间约束图,以时间证据合并的方法分析离散事件在时间维度上的可观性,进而提出了FDES中复杂系统在时间维度上的模糊可观程度(Observable Degree in Dimensionality of Time,ODDT)概念及测量方法。最后根据全局状态的时间信息计算其可观程度,构造出一种基于ODDT的FDES复合因果链层次化解耦方法。
Abstract:
In order to solve the state explosion problem caused by the coupling of fuzzy causality and inaccurate information in complex system structure, this paper presents a hierarchical decoupling method based on ODDT for FDES composite causal chain.. The method first constructs a Petri nets model (TC-PPN) for decoupling the causal chain under the time constraints. Then based on the merged state information and timing information, the conception and measurement method of Observable Degree in Dimensionality of Time (ODDT) of complex systems in FDES are further proposed by constructing the time constrained graph of observation information. Finally, based on the time information of the global state, the degree of observability is calculated and a hierarchical decoupling method based on ODDT is proposed

相似文献/References:

[1]张恒艳,谢文博,赵阳,等.不确定T-S模糊系统的跟踪控制器设计[J].郑州大学学报(工学版),2016,37(02):15.[doi:10.3969/j.issn.1671-6833.201504057]
 Zhang Hengyan,Senior Zhongwen,Li Wenlong,et al.The Design of Tracking Controller for T-S Fuzzy Systems with Uncertainty[J].Journal of Zhengzhou University (Engineering Science),2016,37(04):15.[doi:10.3969/j.issn.1671-6833.201504057]
[2]孙晓燕,时良振,徐瑞东,等.基于区间样本和回声状态网络的风电功率不确定性预测[J].郑州大学学报(工学版),2017,38(01):56.[doi:10.13705/j.issn.1671-6833.2017.01.003]
 Sun Xiaoyan,Shi Liangzhen,Xu Ruidong,et al.Forecast of wind power generation with uncertainty based on interval sample and echo state network[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):56.[doi:10.13705/j.issn.1671-6833.2017.01.003]
[3]孙晓燕,朱利霞,陈杨.基于可能性条件偏好网络的交互式遗传算法及其应用[J].郑州大学学报(工学版),2017,38(06):1.[doi:10.13705/j.issn.1671-6833.2017.06.001]
 Sun Xiaoyan,Zhu Lixia,Chen Yang.Probabilistic Conditional Preference Network Assisted Interactive Genetic Algorithm and Its Application[J].Journal of Zhengzhou University (Engineering Science),2017,38(04):1.[doi:10.13705/j.issn.1671-6833.2017.06.001]
[4]彭金柱,卞英楠,周树亮.基于DRNN网络的轮式机器人鲁棒 Hi infinity 控制[J].郑州大学学报(工学版),2018,39(04):64.[doi:10.13705/j.issn.1671-6833.2018.01.016]
 Peng Jinzhu,Bian Yingnan,Zhou Shuliang.A Stable NRobust Control for Wheeled Robotic System Based on DRNN Network and H∞ Methods[J].Journal of Zhengzhou University (Engineering Science),2018,39(04):64.[doi:10.13705/j.issn.1671-6833.2018.01.016]

更新日期/Last Update: 2019-07-29