[1]逯鹏,李奇航,尚莉伽,等.基于优化极限学习机的CVD预测模型研究[J].郑州大学学报(工学版),2019,40(02):1-5.
 A CVD Predicion Model Based On Optimized Extreme Learning Machine[J].Journal of Zhengzhou University (Engineering Science),2019,40(02):1-5.
点击复制

基于优化极限学习机的CVD预测模型研究()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
40
期数:
2019年02期
页码:
1-5
栏目:
出版日期:
2019-03-19

文章信息/Info

Title:
A CVD Predicion Model Based On Optimized Extreme Learning Machine
作者:
逯鹏李奇航尚莉伽李新建张微
郑州大学 电气工程学院 河南 郑州 互联网医疗与健康服务河南省协同创新中心 北京市东城区中小学卫生保健所
关键词:
心血管疾病风险预测极限学习机粒子群
文献标志码:
A
摘要:
利用机器学习算法,改变传统心血管疾病(CVD)预测模型的严格数理化公式,以增加危险因素的纳入,降低数据格式的要求.首先提出利用基于单隐层前馈神经网络(SLFNs) 的极限学习机(ELM) 算 法建立CVD预测模型,进一步通过五阶段连续变异方式建立增强领导粒子的粒子群算法(ELPSO),以粒子群(PSO) 算法的优化策略,!对SLFNsJ的隐层单元参数进行优化,通过对UCI数据库stalog(heart)数据集和heart disease 分析结果显示,所提ELPSO-ELM模 型测试正确率分别达到85.71%,84.00%,AUC(ROC曲线下面积)分别达到0.9024、0.8423,高于传统CVD预测模型,同时放松了数据线性化约束,能纳入更多的复杂危险因素。 线性化约束!能纳入更多的复杂危险因素
Abstract:
Abstract: In order to increase the risk factors that could be accepted and reduce the data format requirements in cardiovascular disease (CVD) predicition models,machine learning algorithms were used to change the strict mathematical formulas of traditional CVD prediction models.Frstly,a CVD prediction model by extreme learning machine (ELM)algorithm based on single hidden layer feed-forward neural network (SLFNs) was proposed. Further more,an enhanced leader particle swarm optimization(ELPSO) through a five-staged successive mutation method was used ,and the optimized strategy of PSO was also used to optimize the SLFNs hidden layer units parameters.The analysis results on Statlog(Heart) dataset and Heart Disease Dataset of UCI database indicated that the test accuracy of proposed ELPSO-ELM model could reach 85.71%and 84.00%respectively, the AUC(The area under the ROC curve )could reach 0.9024 and 0.8423 respectively.They were higher than conventional CVD prediction models.The proposed models relaxed the linear constraints of data format and more complex risk factors could be accepted.
更新日期/Last Update: 2019-03-21