[1]王恒,曹鹏飞,陈国文,等.相变材料与风冷耦合的电池热管理优化策略[J].郑州大学学报(工学版),2026,47(XX):1-8.[doi:10.13705/j.issn.1671-6833.2026.03.008]
 WANG Heng,CAO Pengfei,CHEN Guowen,et al.Optimization Strategy of Thermal Management of Batteries Coupled with Phase Change Materials and Air Cooling[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-8.[doi:10.13705/j.issn.1671-6833.2026.03.008]
点击复制

相变材料与风冷耦合的电池热管理优化策略()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-8
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Optimization Strategy of Thermal Management of Batteries Coupled with Phase Change Materials and Air Cooling
作者:
王恒1 曹鹏飞1 陈国文2 杨婵1 朱俊帆1 张亚飞1 王瑞鑫1 佘家豪1
1. 长安大学 能源与电气工程学院,陕西 西安 710016;2. 徐工新能源动力科技有限公司,江苏 徐州 221700
Author(s):
WANG Heng1CAO Pengfei 1CHEN Guowen2 YANG Chan1 ZHU Junfan1ZHANG Yafei1 WANG Ruixin1 SHE Jiahao1
1. School of Energy and Electrical Engineering, Chang ’an University, Xi’ an 710016, China;2. XU GONG New Energy Power Technology Co,LTD., Xuzhou, 221700, China
关键词:
电池热管理 多目标优化 遗传算法 相变冷却 风冷
Keywords:
battery thermal management multi-objective optimization genetic algorithm phase change cooling air coolin
分类号:
TM912U469. 72
DOI:
10.13705/j.issn.1671-6833.2026.03.008
文献标志码:
A
摘要:
针对高放电倍率电流下单一相变材料热管理的电池模组存在热失效和中心温度积累的难题,在相变材料冷却系统中引入空气耦合,提出了耦合热管理系统的电池排布结构优化策略。本策略针对复合相变材料(CPCM)耦合空气方式的电池热管理系统,基于拉丁超立方抽样,采用Kriging近似模型和MIGA算法对电池间距进行多目标优化。研究表明,电池模组采用优化后间距,相变材料热管理系统最高温度降低3.64 ℃,最大温差降低2.75 ℃;相变材料-空气耦合热管理系统电池最高温度进一步下降0.6 ℃。并进一步对比研究了材料密度、进风风速和放电倍率对优化电池模组热管理系统的影响,结果表明,高密度的CPCM可提升系统的散热能力与均温性;高风速在增强散热的同时会降低系统均温性。优化后的耦合热管理系统,在2C放电结束时,最高温度为42.60 ℃,最大温差低于1 ℃;在3C放电结束时,最高温度可以控制在44.9 ℃以下,最大温差低于1.5 ℃。
Abstract:
Under high-discharge-rate currents, battery modules with single-phase change material (PCM) thermal management experience thermal failure and central temperature accumulation. To solve this problem, air cooling is introduced into the PCM cooling system. A battery arrangement optimization strategy for hybrid thermal management is proposed. A composite PCM (CPCM) coupled with forced air convection was developed for the thermal management system. This strategy targets a composite PCM (CPCM) coupled with air cooling. Latin Hypercube Sampling is adopted. Kriging approximation modeling and the MIGA algorithm are applied. Multi-objective optimization of battery spacing is conducted. Results demonstrate that the optimized spacing configuration significantly improves thermal performance. Compared to the initial spacing, the PCM-only system achieves a reduction in maximum temperature of 3.64 °C and a decrease in maximum temperature difference of 2.75 °C. Furthermore, the proposed CPCM-air coupled system provides an additional peak temperature reduction of 0.6 °C. Parametric studies reveal that higher CPCM density enhances both cooling capacity and temperature uniformity. Increasing air velocity improves heat dissipation but reduces temperature homogeneity. Besides, the optimized module with coupled thermal management system maintains temperature below 42.60 °C (ΔT<1 °C) at 2C discharge and below 44.9 °C (ΔT<1.5 °C) at 3C discharge.

参考文献/References:

[1] ABDELKAREEM M A, MACH RABIE H M, ABO-KHALILA G, et al. Thermal management systems based on heat pipes for batteries in EVs/HEVs[J]. Journal of Energy Storage, 2022,51:104384.
[2] KOORATA P K, CHANDRASEKARAN N. Numerical investigation of cooling performance of a novel air-cooled thermal management system for cylindrical Li-ion battery module[J]. Applied Thermal Engineering, 2021,193:116961.
[3] WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281.
[4] WANG Y N, WANG Z K, MIN H T, et al. Performance investigation of a passive battery thermal management system applied with phase change material[J]. Journal of Energy Storage, 2021, 35: 102279.
[5] NAVID N, HAMID G, MOHAMMADREZA R, et al. The role of phase change materials in lithium-ion batteries: a brief review on current materials, thermal management systems, numerical methods, and experimental models[J]. Journal of Energy Storage, 2023, 63:107061.
[6] 安国治, 邓芳, 严冬, 等. 风冷式CPCM锂离子电池热管理系统性能分析[J]. 电源技术, 2021, 45(09): 1125-1128, 1192.
AN Z G, DENG F, YAN D, et al. Performance analysis of air-cooled CPCM lithium ion battery thermal management system[J]. Chinese Journal of Power Sources, 2021, 45(9): 1125-1128, 1192.
[7] 何闯, 赵钦新, 梁志远. 具有扰流结构的风冷型锂电池包热管理系统优化[J]. 郑州大学学报(工学版), 2025, 46(1): 90-97.
HE C, ZHAO Q X, LIANG Z Y. Performance optimization of air-cooled lithium battery pack thermal management system with turbulence structure[J]. Journal of Zhengzhou University (Engineering Science), 2025, 46(1): 90-97.
[8] 杨涵, 刘宁豪, 高强, 等. 基于NSGA-Ⅱ的双迷宫流道液冷板结构优化设计[J]. 材料导报, 2025, 39(15): 240-246.
YANG H, LIU N H, GAO Q, et al. Structural optimization design of dual-maze flow channel liquid cooling plates based on NSGA-Ⅱ [J]. Journal of Materials Guide, 2025,39(15):240-246.
[9] 张晓光, 潘晓楠, 李金铭, 等. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135.
ZHANG X G, PAN X N, LI J M, et al. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs[J]. Energy Storage Science and Technology, 2022, 11(1): 127-135.
[10] 郭茶秀, 魏金宇. 电池排布方式对21700锂电池相变热管理系统的影响[J]. 郑州大学学报(工学版), 2023, 44(2): 91-97.
GUO C X, WEI J Y. Influence of different arrangement on phase change thermal management system of 21700 lithium battery[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 91-97.
[11] XU Y F, ZHANG H Y, XU X B, et al. Numerical analysis and surrogate model optimization of air-cooled battery modules using double-layer heat spreading plates[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121380.
[12] WU W X, WU W, WANG S F. Thermal optimization of composite PCM based large-format lithium-ion battery modules under extreme operating conditions[J]. Energy Conversion and Management, 2017, 153: 22-33.
[13] WU Q C, HUANG R, YU X L. Measurement of thermophysical parameters and thermal modeling of 21, 700 cylindrical battery[J]. Journal of Energy Storage, 2023, 65: 107338.
[14] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 132(1): 5-12.
[15] SHI S, XIE Y, LI M, et al. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials[J]. Energy Conversion and Management, 2017, 138:84-96.
[16] LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409.
[17] 张甫仁, 肖康, 鲁福, 等. 基于NSGA-Ⅱ的锂离子电池液冷板的优化设计[J]. 重庆交通大学学报(自然科学版), 2023, 42(1): 145-150.
ZHANG F R, XIAO K, LU F, et al. Optimal design of liquid cooling plate for lithium-ion battery based on NSGA-Ⅱ [J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(1): 145-150.
[18] MONIKA K, PUNNOOSE E M, DATTA S P. Multi-objective optimization of cooling plate with hexagonal channel design for thermal management of Li-ion battery module[J]. Applied Energy, 2024, 368:123423.
[19] DONG H, CHEN X, YAN S, et al. Multi-objective optimization of lithium-ion battery pack thermal management systems with novel bionic lotus leaf channelsusing NSGA-Ⅱ and RSM[J]. Energy, 2025, 314:134326.

相似文献/References:

[1]王栋,苏智剑,陈江义,等.YT16拖式压实机动力参数的多目标优化[J].郑州大学学报(工学版),2001,22(01):61.[doi:10.3969/j.issn.1671-6833.2001.01.017]
[2]轩 华,耿祝新,李 冰.组合缓冲约束下的多目标混合流水线节能调度[J].郑州大学学报(工学版),2025,46(01):17.[doi:10.13705/j.issn.1671-6833.2024.04.009]
 XUAN Hua,GENG Zhuxin,LI Bing.Multi-objective Hybrid Flowline Energy-saving Scheduling with Combined Buffer Constraints[J].Journal of Zhengzhou University (Engineering Science),2025,46(XX):17.[doi:10.13705/j.issn.1671-6833.2024.04.009]
[3]耿雪莲,宋明阳,冯 毅,等.面向关键词预测的动态对比表示增强方法[J].郑州大学学报(工学版),2025,46(03):128.[doi:10.13705/j.issn.1671-6833.2025.03.004]
 GENG Xuelian,SONG Mingyang,FENG Yi,et al.Dynamic Contrastive Representation Enhancement Approach for Keyphrase Prediction[J].Journal of Zhengzhou University (Engineering Science),2025,46(XX):128.[doi:10.13705/j.issn.1671-6833.2025.03.004]
[4]张博强,郭晓静,田华良,等.基于液冷的特种车辆电池流道结构优化设计[J].郑州大学学报(工学版),2026,47(XX):1.[doi:10.13705/j.issn.1671-6833.2025.03.025]
 ZHANG Boqiang,GUO Xiaojing,TIAN Hualiang,et al.Design of Battery Channel Structure for Special Vehicles Based on Liquid Cooling[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1.[doi:10.13705/j.issn.1671-6833.2025.03.025]

备注/Memo

备注/Memo:
收稿日期:2025-10-22;修订日期:2025-11-30
基金项目:国家资助博士后研究人员计划( GZC20241442) ;陕西省博士后基金( 2024BSHSDZZ070) ;陕西省大学生创新创业计划( S202410710392X)
通信作者:王恒(1973— ) ,男,山东济南人,长安大学副教授,博士,主要从事车用清洁能源应用理论与技术的研究,E-mail:wangheng@chd.edu.cn。
更新日期/Last Update: 2026-01-21