[1]陶 洁,魏溦佳,张玉顺,等.基于创新趋势分析方法的三门峡库区降水变异分析[J].郑州大学学报(工学版),2026,47(01):11-17(72).[doi:10.13705/j.issn.1671-6833.2026.01.007]
 TAO Jie,WEI Weijia,ZHANG Yushun,et al.Analysis of Precipitation Variability in Sanmenxia Reservoir Area Based on Innovative Trend Analysis Methods[J].Journal of Zhengzhou University (Engineering Science),2026,47(01):11-17(72).[doi:10.13705/j.issn.1671-6833.2026.01.007]
点击复制

基于创新趋势分析方法的三门峡库区降水变异分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年01期
页码:
11-17(72)
栏目:
出版日期:
2026-01-06

文章信息/Info

Title:
Analysis of Precipitation Variability in Sanmenxia Reservoir Area Based on Innovative Trend Analysis Methods
文章编号:
1671-6833(2026)01-0011-07
作者:
陶 洁12 魏溦佳1 张玉顺3 许琳娟456 左其亭12
1.郑州大学 水利与交通学院,河南 郑州 450001;2.河南省水循环模拟与水环境保护国际联合实验室,河南 郑州 450001;3.河南省水利科技应用中心,河南 郑州 450000;4.黄河水利委员会 黄河水利科学研究院,河南 郑州 450003;5.水利部黄河下游河道与河口治理重点实验室,河南 郑州 450003;6.黄河实验室,河南 郑州 450003
Author(s):
TAO Jie12 WEI Weijia1 ZHANG Yushun3 XU Linjuan456 ZUO Qiting12
1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 2.Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China; 3.Henan Provincial Water Conservancy Science and Technology Application Center, Zhengzhou 450000, China; 4.Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China; 5.Key Laboratory of Lower Yellow River Channel and Estuary Regulation, MWR, Zhengzhou 450003, China; 6.Yellow River Laboratory, Zhengzhou 450003, China
关键词:
降水指标 创新趋势分析 创新多边形趋势分析 创新趋势枢轴分析法 三门峡库区
Keywords:
precipitation index innovative trend analysis innovative polygon trend analysis innovative trend pivot analysis method Sanmenxia Reservoir area
分类号:
P333TV11
DOI:
10.13705/j.issn.1671-6833.2026.01.007
文献标志码:
A
摘要:
针对黄河流域三门峡库区降水变异机制不清、传统趋势分析方法难以捕捉序列内部结构变化的问题,综合应用创新趋势分析(ITA)、创新多边形趋势分析(IPTA)和创新趋势枢轴分析法(ITPAM)系统解析了1957—2020年三门峡气象站降水序列的多尺度变异特征,并与Mann-Kendall等传统趋势检验方法进行对比。结果表明:三门峡气象站年降水整体和高值类均呈现显著下降趋势,统计量S=-1.031;多年月均降水量整体变化较为均匀,但7—9月份呈现出“趋势下降-变幅较大-风险等级高”的复合模式;最大1 d和5 d降水量均呈现显著下降趋势,但降水强度显著上升(S=0.069),区域降水模式向“低频-高强度”转型。与传统方法相比,创新趋势分析方法可以对时间序列的不同时间尺度、不同值区、不同风险等级进行更好的识别和细节解析,更具有灵活性优势。
Abstract:
In response to the unclear mechanism of precipitation variation in the Sanmenxia Reservoir area of the Yellow River Basin and the difficulty of traditional trend analysis methods in capturing internal structural changes in the sequence, innovative trend analysis (ITA), innovative polygon trend analysis (IPTA), and innovative trend pivot analysis method (ITPAM) were comprehensively applied to systematically analyze the multi-scale variation characteristics of the precipitation sequence at the Sanmenxia weather station from 1957 to 2020. And they were compared with traditional trend testing methods such as the Mann-Kendall trend test. The results showed that both the annual precipitation at the Sanmenxia weather station and the high-value category showed a significant downward trend, with a statistic S=-1.031. The overall change in the monthly average precipitation over many years was relatively uniform, but from July to September, a compound pattern of "trend reduction-large variation-high risk level" emerged. The maximum both 1 d and 5 d precipitation showed a significant downward trend, but the precipitation intensity significantly increased (S=0.069), indicating a transformation of the regional precipitation pattern towards "low frequency high intensity". Compared with traditional methods, the innovative trend analysis methods could better identify and detaily analyze different time scales, different value zones, and different risk levels of time series, and had greater flexibility advantages.

参考文献/References:

[1]甘容, 马超鑫, 高勇, 等. 基于二次分解和支持向量机的月径流预测方法[J]. 郑州大学学报(工学版), 2024, 45(6): 32-39.

GAN R, MA C X, GAO Y, et al. Monthly runoff prediction method based on secondary decomposition and support vector machine[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(6): 32-39.
[2]任建成, 谷山青, 冯存峨, 等. 气候变化背景下山东省气温与降水时空变化特征分析[J]. 水利水电技术(中英文), 2023, 54(5): 27-37.
REN J C, GU S Q, FENG C E, et al. Analysis of the temporal and spatial variation characteristics of temperature and precipitation in Shandong Province under the background of climate change[J]. Water Resources and Hydropower Engineering, 2023, 54(5): 27-37.
[3]张文浩, 瞿思敏, 徐瑶, 等. 泼河水库对潢河径流过程及水文情势的影响[J]. 水资源保护, 2021, 37(3): 61-65.
ZHANG W H, QU S M, XU Y, et al. Influence of Pohe Reservoir on runoff process and hydrological regime of Huanghe River[J]. Water Resources Protection, 2021, 37(3): 61-65.
[4]姜瑶, 徐宗学, 王静. 基于年径流序列的五种趋势检测方法性能对比[J]. 水利学报, 2020, 51(7): 845-857.
JIANG Y, XU Z X, WANG J. Comparison among five methods of trend detection for annual runoff series[J]. Journal of Hydraulic Engineering, 2020, 51 (7): 845-857.
[5]邹磊, 夏军, 张印, 等. 海河流域降水时空演变特征及其驱动力分析[J]. 水资源保护, 2021, 37(1): 53-60.
ZOU L, XIA J, ZHANG Y, et al. Spatial-temporal change characteristics and driving forces of precipitation in the Haihe River Basin[J]. Water Resources Protection, 2021, 37(1): 53-60.
[6]王霞雨, 贾文豪, 王森, 等. 基于创新趋势分析方法的珠江流域降水径流变化趋势研究[J]. 水利水电技术(中英文), 2025, 56(4): 52-69.
WANG X Y, JIA W H, WANG S, et al. Research on the variation trends of precipitation and runoff in the Pearl River Basin based on innovative trend analysis method[J]. Water Resources and Hydropower Engineering, 2025, 56(4): 52-69.
[7]ŞEN Z. Innovative trend analysis methodology[J]. Journal of Hydrologic Engineering, 2012, 17(9): 1042-1046.
[8]ŞEN Z. Trend identification simulation and application[J]. Journal of Hydrologic Engineering, 2014, 19(3): 635-642.
[9]ZEKÂI Ş, EYÜP Ş, DABANLI I. Innovative polygon trend analysis (IPTA) and applications[J]. Journal of Hydrology, 2019, 575: 202-210.
[10] CERIBASI G, CEYHUNLU A I, AHMED N. Innovative trend pivot analysis method (ITPAM): a case study for precipitation data of Susurluk Basin in Turkey[J]. Acta Geophysica, 2021, 69(4): 1465-1480.
[11]WU H, QIAN H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s[J]. International Journal of Climatology, 2017, 37(5): 2582-2592.
[12]李昕阳, 杜军凯, 胡新功, 等. 基于多种趋势分析方法的降水演变趋势分析[J]. 水电能源科学, 2023, 41(10): 14-18.
LI X Y, DU J K, HU X G, et al. Analysis of precipitation evolution trend based on various trend analysis methods[J]. Water Resources and Power, 2023, 41(10): 14-18.
[13]可灏, 贾本有, 王文卓, 等. 基于IPTA的黄河流域天然月径流趋势分析[J]. 水文, 2021, 41(6): 18-25.
KE H, JIA B Y, WANG W Z, et al. Natural runoff trend analysis of the Yellow River Basin based on IPTA[J]. Journal of China Hydrology, 2021, 41(6): 18-25.
[14] SONALI P, KUMAR D N. Review of trend detection methods and their application to detect temperature changes in India[J]. Journal of Hydrology, 2013, 476: 212227.
[15] ŞAN M, AKÇAY F, LINH N T T, et al. Innovative and polygonal trend analyses applications for rainfall data in Vietnam[J]. Theoretical and Applied Climatology, 2021, 144(3): 809-822.
[16]郑珊, 吴保生, 侯素珍, 等. 三门峡水库时空冲淤与滞后响应[J]. 水利学报, 2019, 50(12): 1433-1445.
ZHENG S, WU B S, HOU S Z, et al. Spatial and temporal erosion and deposition processes and the delayed response of the Sanmenxia reservoir[J]. Journal of Hydraulic Engineering, 2019, 50(12): 1433-1445.
[17]沈逸, 郑珊, 吴保生. 基于滞后响应模型的三门峡水库冲淤计算方法[J]. 水利学报, 2022, 53(10): 1207-1217.
SHEN Y, ZHENG S, WU B S. Calculation method for erosion and deposition processes in the Sanmenxia reservoir based on delayed response model[J]. Journal of Hydraulic Engineering, 2022, 53(10): 1207-1217.
[18] ŞEN Z. Innovative trend significance test and applications[J]. Theoretical and Applied Climatology, 2017, 127(3): 939-947.
[19] ALSAQR A M. Remarks on the use of Pearson′s and Spearman′s correlation coefficients in assessing relationships in ophthalmic data[J]. African Vision and Eye Health, 2021, 80(1): 1-10.
[20] EDEN S K, LI C, SHEPHERD B E. Nonparametric estimation of Spearman′s rank correlation with bivariate survival data[J]. Biometrics, 2022, 78(2): 421-434.
[21]张殷钦, 胡伟, 刘俊民. 基于R/S分析法的地下水位动态变化趋势分析[J]. 中南大学学报(自然科学版), 2012, 43(12): 4912-4916.
ZHANG Y Q, HU W, LIU J M. Groundwater level regime variation trend on basis of rescaled range analysis[J]. Journal of Central South University (Science and Technology), 2012, 43(12): 4912-4916.
[22]许钦, 叶鸣, 蔡晶, 等. 1956—2018年太湖流域降水统计特征及演变趋势[J]. 水资源保护, 2023, 39(1): 127-132, 173.
XU Q, YE M, CAI J, et al. Precipitation statistical characteristics and evolution trend in Taihu Lake Basin from 1956 to 2018[J]. Water Resources Protection, 2023, 39(1): 127-132, 173.

更新日期/Last Update: 2026-01-17