[1]XIA Y, PAN X Y, SHEN H B. A comprehensive survey on protein-ligand binding site prediction[J]. Current Opinion in Structural Biology, 2024, 86: 102793.[2]LE GUILLOUX V, SCHMIDTKE P, TUFFERY P. Fpocket: an open source platform for ligand pocket detection[J]. BMC Bioinformatics, 2009, 10: 168.
[3]BINKOWSKI T A, NAGHIBZADEH S, LIANG J. CASTp: computed atlas of surface topography of proteins[J]. Nucleic Acids Research, 2003, 31(13): 3352-3355.
[4]SIGRIST C J A, DE CASTRO E, CERUTTI L, et al. New and continuing developments at PROSITE[J]. Nucleic Acids Research, 2013, 41: D344-D347.
[5]KRIVÁK R, HOKSZA D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure[J]. Journal of Cheminformatics, 2018, 10(1): 39.
[6]INNIS C A. siteFiNDER|3D: a web-based tool for predicting the location of functional sites in proteins[J]. Nucleic Acids Research, 2007, 35: W489-W494.
[7]ZHOU H Y, CAO H N, SKOLNICK J. FINDSITEcomb2.0: a new approach for virtual ligand screening of proteins and virtual target screening of biomolecules[J]. Journal of Chemical Information and Modeling, 2018, 58(11): 2343-2354.
[8]SCHYMKOWITZ J, BORG J, STRICHER F, et al. The FoldX web server: an online force field[J]. Nucleic Acids Research, 2005, 33: W382-W388.
[9]RAVINDRANATH P A, SANNER M F. AutoSite: an automated approach for pseudo-ligands prediction-from ligand-binding sites identification to predicting key ligand atoms[J]. Bioinformatics, 2016, 32(20): 3142-3149.
[10] FRIESNER R A, BANKS J L, MURPHY R B, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy[J]. Journal of Medicinal Chemistry, 2004, 47(7): 1739-1749.
[11]池燕飞,李春,冯旭东.机器学习在蛋白质功能预测领域的研究进展[J].生物工程学报,2023,39(6):2141-2157.
CHI Y F, LI C, FENG X D. Advances in machine learning for predicting protein functions[J]. Chinese Journal of Biotechnology, 2023, 39(6): 2141-2157.
[12] KOZLOVSKII I, POPOV P. Computational methods for binding site prediction on macromolecules[J]. Quarterly Reviews of Biophysics, 2025, 58: 1-31.
[13] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]∥ Medical Image Computing and Computer Assisted Intervention-MICCAI 2015. Cham: Springer, 2015: 234-241.
[14] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[J]. Lecture Notes in Computer Science, 2016, 9901: 424-432.
[15] JIMÉNEZ J, DOERR S, MARTÍNEZ-ROSELL G, et al. DeepSite: protein-binding site predictor using 3D-convolutional neural networks[J]. Bioinformatics, 2017, 33(19): 3036-3042.
[16] MYLONAS S K, AXENOPOULOS A, DARAS P. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins[J]. Bioinformatics, 2021, 37(12): 1681-1690.
[17] STEPNIEWSKA-DZIUBINSKA M M, ZIELENKIEWICZ P, SIEDLECKI P. Improving detection of protein-ligand binding sites with 3D segmentation[J]. Scientific Reports, 2020, 10(1): 5035.
[18] AGGARWAL R, GUPTA A, CHELUR V, et al. DeepPocket: ligand binding site detection and segmentation using 3D convolutional neural networks[J]. Journal of Chemical Information and Modeling, 2022, 62(21): 5069-5079.
[19] LI P Y, CAO B H, TU S K, et al. RecurPocket: recurrent Lmser network with gating mechanism for protein binding site detection[C]∥2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Piscataway: IEEE, 2022: 334-339.
[20] LI P Y, LIU Y C, TU S K, et al. GLPocket: a multi-scale representation learning approach for protein binding site prediction[C]∥ IJCAI International Joint Conference on Artificial Intelligence. Macao: JCAI,2023: 4821-4828.
[21] LIN X L, YANG W L, CHEN Y Y, et al. ResPocket: a multi-scale feature fusion method for improving protein binding site detection[C]∥2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Piscataway: IEEE, 2024: 1588-1591.
[22] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[23] KELLENBERGER E, MULLER P, SCHALON C, et al. sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank[J]. Journal of Chemical Information and Modeling, 2006, 46(2): 717-727.
[24]WANG R X, FANG X L, LU Y P, et al. The PDBbind database: methodologies and updates[J]. Journal of Medicinal Chemistry, 2005, 48(12): 4111-4119.