[1]WANG Y M, ZHANG B, DI L M. Research progress of EEG-based emotion recognition: a survey[J]. ACM Computing Surveys, 2024, 56(11): 1-49.[2]LIU Y, WEI Y, LI C, et al. Bi-CapsNet: a binary capsule network for EEG-based emotion recognition[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(3): 1319-1330.
[3]YANG Y L, WU Q F, FU Y Z, et al. Continuous convolutional neural network with 3D input for EEG-based emotion recognition[J]. Lecture Notes in Computer Science,2018,11307(1):433-443.
[4]SHARMA L D, BHATTACHARYYA A. A computerized approach for automatic human emotion recognition using sliding mode singular spectrum analysis[J]. IEEE Sensors Journal, 2021, 21(23): 26931-26940.
[5]GALVÃO F, ALARCÃO S M, FONSECA M J. Predicting exact valence and arousal values from EEG[J]. Sensors, 2021, 21(10): 3414.
[6]TAO W, LI C, SONG R C, et al. EEG-based emotion recognition via channel-wise attention and self attention[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 382-393.
[7]魏琛, 陈兰岚, 张傲. 基于集成卷积神经网络的脑电情感识别[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 614-622.
WEI C, CHEN L L, ZHANG A. Emotion recognition of EEG based on ensemble convolutional neural networks[J]. Journal of East China University of Science and Technology, 2019, 45(4): 614-622.
[8]SONG T F, ZHENG W M, SONG P, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2020, 11(3): 532-541.
[9]YANG L Q, LIU J W. EEG-based emotion recognition using temporal convolutional network[C]∥2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS). Piscataway: IEEE, 2019: 437-442.
[10] SALAMA E S, EL-KHORIBI R A, SHOMAN M E, et al. EEG-based emotion recognition using 3D convolutional neural networks[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(8): 329-337.
[11] RAMZAN M, DAWN S. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals[J]. International Journal of Neuroscience, 2023, 133(6): 587-597.
[12] YANG Y L, WU Q F, QIU M, et al. Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network[C]∥2018 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2018: 1-7.
[13] LU Y F, ZHENG W L, LI B B, et al. Combining eye movements and EEG to enhance emotion recognition[C]∥International Joint Conference on Artificial Intelligence. Buenos Aires: IJCAI, 2015: 1170-1176.
[14] BUSA M A, VAN EMMERIK R E A. Multiscale entropy: a tool for understanding the complexity of postural control[J]. Journal of Sport and Health Science, 2016, 5(1): 44-51.
[15] ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2018-0427)[2025-03-30]. https:∥arxiv.org/abs/1710.09412.
[16] GAGLIARDI G, ALFEO A L, CATRAMBONE V, et al. Improving emotion recognition systems by exploiting the spatial information of EEG sensors[J]. IEEE Access, 2023, 11: 39544-39554.
[17] CUI F C, WANG R Q, DING W W, et al. A novel DECNN-BiLSTM multi-fusion model for EEG emotion recognition[J]. Mathematics, 2022, 10(4): 582-593.
[18] VAZQUEZ-RODRIGUEZ J, LEFEBVRE G, CUMIN J, et al. Emotion recognition with pre-trained transformers using multimodal signals[C]∥2022 10th International Conference on Affective Computing and Intelligent Interaction (ACII). Piscataway: IEEE, 2022: 1-8.
[19] TOPIC A, RUSSO M, STELLA M, et al. Emotion recognition using a reduced set of EEG channels based on holographic feature maps[J]. Sensors, 2022, 22(9): 3248.
[20] ZHAO Y X, YANG J, LIN J L, et al. A 3D convolutional neural network for emotion recognition based on EEG signals[C]∥2020 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 2020: 1-6.