LI Q, ZHAO F, LI B Q, et al. Improved Faster R-CNN algorithm and its application in power work safety wearing detection[J]. Engineering Journal of Wuhan University, 2024, 57(4): 462-469.
[2]方明, 张娇, 徐晶, 等. 基于改进YOLOv8的轻量化皮革缺陷检测方法[J]. 电子测量技术, 2025, 48(1): 111-118.
FANG M, ZHANG J, XU J, et al. Lightweight leather defect detection method based on improved YOLOv8[J]. Electronic Measurement Technology, 2025, 48(1): 111-118.
[3]李华, 薛曦澄, 吴立舟, 等. 深度学习下吊装作业工人防护装备及吊钩检测方法[J]. 安全与环境学报, 2024, 24(3): 1027-1035.
LI H, XUE X C, WU L Z, et al. Protective equipment and hook testing methods for workers in lifting operations under deep learning[J]. Journal of Safety and Environment, 2024, 24(3): 1027-1035.
[4]崔铁军, 郭大龙. 基于改进YOLOX的变电站工人防护设备检测研究[J]. 中国安全生产科学技术, 2023, 19(4): 201-206.
CUI T J, GUO D L. Research on detection of protection equipment for substation workers based on improved YOLOX[J]. Journal of Safety Science and Technology, 2023, 19(4): 201-206.
[5]张曼, 孙凯军, 李翔, 等. 融合FasterNet和RepVGG的安全设备佩戴检测方法[J]. 山东大学学报(工学版), 2024, 54(6): 19-28.
ZHANG M, SUN K J, LI X, et al. A security device wearing detection method integrating FasterNet and RepVGG[J]. Journal of Shandong University (Engineering Science), 2024, 54(6): 19-28.
[6]刘甜甜, 彭放, 卢伟龙, 等. 基于YOLOv7的智能电网外部安全帽佩戴风险因素识别与检测[J]. 电测与仪表, 2024, 61(12): 42-48.
LIU T T, PENG F, LU W L, et al. Identification and detection of external risk factors for safety helmet wearing in smart grid based on YOLOv7[J]. Electrical Measurement & Instrumentation, 2024, 61(12): 42-48.
[7]WANG M L, QIU H T, WANG J R. Helmet detection algorithm based on lightweight improved YOLOv8[J]. Signal, Image and Video Processing, 2024, 19(1): 1-13.
[8]谢国波, 肖峰, 林志毅, 等. 复杂作业场景下的反光衣和安全帽检测方法[J]. 安全与环境学报, 2024, 24(9): 3513-3521.
XIE G B, XIAO F, LIN Z Y, et al. Method for detecting reflective vests and safety helmets in complex operational environments[J]. Journal of Safety and Environment, 2024, 24(9): 3513-3521.
[9]张学立, 贾新春, 王美刚, 等. 安全帽与反光衣的轻量化检测: 改进YOLOv5s的算法[J]. 计算机工程与应用, 2024, 60(1): 104-109.
ZHANG X L, JIA X C, WANG M G, et al. Lightweight detection of helmets and reflective clothings: improved YOLOv5s algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 104-109.
[10]郑海洋, 宋纯贺, 武婷婷, 等. 面向绝缘手套佩戴状况检测的小目标检测与匹配算法[J]. 小型微型计算机系统, 2023, 44(9): 1989-1995.
ZHENG H Y, SONG C H, WU T T, et al. Small target detection and matching algorithm for wearing condition detection of insulating gloves[J]. Journal of Chinese Computer Systems, 2023, 44(9): 1989-1995.
[11]王茹, 刘大明, 张健. Wear-YOLO: 变电站电力人员安全装备检测方法研究[J]. 计算机工程与应用, 2024, 60(9): 111-121.
WANG R, LIU D M, ZHANG J. Wear-YOLO: research on detection methods of safety equipment for power personnel in substations[J]. Computer Engineering and Applications, 2024, 60(9): 111-121.
[12] CARION N, MASSA F, SYNNAEVE G, et al. End-toend object detection with transformers[C]∥ European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[13] KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance segmentation[J]. Image and Vision Computing, 2024, 147: 105057.
[14] CHEN J R, KAO S H, HE H, et al. Run, don′t walk: chasing higher FLOPS for faster neural networks[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 12021-12031.
[15] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 658-666.
[16]张鹏, 石丽芬, 陈子阳, 等. 基于多层卷积融合的红外小目标检测算法(特邀)[J]. 激光与光电子学进展, 2024, 61(16): 1611014.
ZHANG P, SHI L F, CHEN Z Y, et al. Infrared small target detection via multi-layer convolution fusion(invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1611014.
[17]王新蕾, 王硕, 翟嘉政, 等. 多任务联合学习下的复杂天气航拍图像目标检测算法[J]. 计算机工程与应用, 2025, 61(2): 97-111.
WANG X L, WANG S, ZHAI J Z, et al. Object detection algorithm of aerial image in complex weather based on multi-task joint learning[J]. Computer Engineering and Applications, 2025, 61(2): 97-111.
[18] LIU C, WANG K G, LI Q, et al. Powerful-IoU: More straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks, 2024, 170: 276-284.
[19] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[EB/OL]. (2019-11-19)[2025-03-08]. https:∥arxiv.org/abs/1911.08287.
[20] ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[21] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[22] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. (2022-05-25)[2025-03-08]. https:∥arxiv.org/abs/2205.12740v1.