[1]张亚敏,沈笑秋,李丰伟,等.双层地层盾构隧道开挖面稳定性及影响因素分析[J].郑州大学学报(工学版),2026,47(XX):1-9.[doi:10.13705/j.issn.1671-6833.2025.05.022]
 ZHANG Yamin,SHEN Xiaoqiu,LI Fengwei,et al.Analysis of Excavation Face Stability and Influencing Factors of Shield Tunnel in Double-layer Strata[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-9.[doi:10.13705/j.issn.1671-6833.2025.05.022]
点击复制

双层地层盾构隧道开挖面稳定性及影响因素分析()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年XX
页码:
1-9
栏目:
出版日期:
2026-09-10

文章信息/Info

Title:
Analysis of Excavation Face Stability and Influencing Factors of Shield Tunnel in Double-layer Strata
作者:
张亚敏13沈笑秋12李丰伟12郑元勋12 Grzegorz Ludwik Golewski4
1. 郑州大学 隧道掘进机及智能运维全国重点实验室,河南 郑州 450001;2. 郑州大学 水利与交通学院, 河南 郑州 450001 ;3. 郑州大学 科技查新站,河南 郑州 450001; 4. Department of Structural Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40 Str. , Lublin 20-618, Poland
Author(s):
ZHANG Yamin13 SHEN Xiaoqiu1 2 LI Fengwei12 ZHENG Yuanxun12 Grzegorz Ludwik Golewski4
1. National Key Laboratory of Tunnel Boring Machine and Intelligent Operation and Maintenance, Zhengzhou University, Zhengzhou 450001, China; 2. School of Water Conservancy and Transportation, Zhengzhou University , Zhengzhou 450001, China; 3 . Technology Patent Search Station, Zhengzhou University, Zhengzhou 450001, China; 4. Department of Structural Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40 Str. , Lublin 20-618, Poland
关键词:
盾构隧道双层地层开挖面稳定性数值模拟敏感度分析
Keywords:
shield tunnel double-layer strata excavation face stability numerical simulation sensitivity analysis
分类号:
U451TU91
DOI:
10.13705/j.issn.1671-6833.2025.05.022
文献标志码:
A
摘要:
为了探究渗流作用下双层地层隧道开挖面失稳机理及其对盾构施工安全性的影响,针对渗流-地层耦合环境中开挖面稳定性问题展开系统研究。首先,基于FLAC3D有限差分软件建立了两种典型地层工况的精细化数值模型:上硬下软地层和上软下硬地层;其次,基于数值模型分析了埋深比、土体内摩擦角、黏聚力、地下水位差及地层分界面位置对盾构开挖面极限支护压力的影响机制;最后,引入灰色关联分析法对上述5种影响因素进行敏感性评价与排序,从而定量揭示各因素对盾构开挖面稳定性的影响程度及其差异性。研究结果表明:在复合地层条件下,开挖面稳定性主要受下部地层强度控制,上部地层的影响仅为下部的40.1%(上硬下软地层)和32.5%(上软下硬地层);各影响因素敏感性排序依次为:水位>土体强度>埋深比>地层分界面位置。
Abstract:
To investigate the instability mechanism of tunnel excavation faces in double-layer strata under seepage conditions and its impact on the safety of shield construction, a systematic study was conducted on the stability of excavation faces in a seepage-stratum coupled environment. First, refined numerical models of two typical stratum conditions—upper-hard and lower-soft strata and upper-soft and lower-hard strata—were established based on the FLAC3D finite difference software. Next, the influence mechanisms of the burial depth ratio, soil internal friction angle, cohesion, groundwater level difference, and stratum interface position on the ultimate support pressure of the shield excavation face were analyzed using the numerical models. Finally, the gray correlation analysis method was introduced to evaluate and rank the sensitivity of these five influencing factors, thereby quantitatively revealing the degree and differences of their impacts on the stability of the shield excavation face. The research results indicated that under composite stratum conditions, the stability of the excavation face was primarily controlled by the strength of the lower stratum, with the influence of the upper strata being only 40.1% (upper-hard and lower-soft strata) and 32.5% (upper-soft and lower-hard strata) of that of the lower stratum. The sensitivity ranking of the influencing factors was as follows: groundwater level>soil strength>burial depth ratio>stratum interface position.

参考文献/References:

[1] 秦新春. 隧道盾构开挖事故统计与开挖过程数值模拟[D]. 廊坊: 防灾科技学院, 2020.
QIN X C. Statistics of tunnel shield excavation accidents and numerical simulation of excavation process [D]. Langfang: Institute of Disaster Prevention, 2020.
[2] ANAGNOSTOU G, KOVÁRI K. The face stability of slurry-shield-driven tunnels [J]. Tunnelling and Underground Space Technology, 1994, 9(2): 165-174.
[3] KIM S H, TONON F. Face stability and required support pressure for TBM driven tunnels with ideal face membrane-drained case [J]. Tunnelling and Underground Space Technology, 2010, 25(5): 526-542.
[4] 李晓龙, 栗鹏超, 刘小锋, 等. 富水粉细砂层联络通道顶管法施工地表沉降分析 [J]. 郑州大学学报(工学版), 2025, 46(1): 67-74.
LI X L, LI P C, LIU X F, et al. Analysis on surface settlement of pipe jacking method for construction of contact channel in water-rich silty fine sand layer [J]. Journal of Zhengzhou University (Engineering Science), 2025, 46(1): 67-74.
[5] VERMEER P A, RUSE N, MARCHER T. Tunnel heading stability in drained ground [J]. Felsbau, 2002, 20(6): 8-18.
[6] 米博, 项彦勇. 砂土地层浅埋盾构隧道开挖渗流稳定性的模型试验和计算研究 [J]. 岩土力学, 2020, 41(3): 837-848.
MI B, XIANG Y Y. Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground [J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
[7] 裴浩东, 叶社保, 杨平, 等. 软土地层盾构掘进参数分析及掘进速度预测 [J]. 郑州大学学报(工学版), 2024, 45(1): 107-113.
PEI H D, YE S B, YANG P, et al. Analysis of boring parameters of shield in soft soil strata and prediction of driving speed [J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(1): 107-113.
[8] 陈育民, 徐鼎平. FLAC/FLAC3D 基础与工程实例 [M]. 2 版. 北京: 中国水利水电出版社, 2013.
CHEN Y M, XU D P. FLAC/FLAC3D foundation and engineering example [M]. 2nd ed. Beijing: China Water & Power Press, 2013.
[9] 王俊. 土压平衡盾构掘进对上软下硬地层扰动研究 [D]. 成都: 西南交通大学, 2017.
WANG J. Study on disturbance of EPB shield tunneling to upper soft and lower hard strata [D]. Chengdu: Southwest Jiaotong University, 2017.
[10] 赵明华, 毛韬, 牛浩懿, 等. 上硬下软地层盾构隧道开挖面极限支护力分析 [J]. 湖南大学学报(自然科学版), 2016, 43(1): 103-109.
ZHAO M H, MAO T, NIU H Y, et al. Analysis of limit supporting force of tunnel excavation face for shield machine in upper-hard-lower-soft ground [J]. Journal of Hunan University (Natural Sciences), 2016, 43(1): 103-109.
[11] 吕玺琳, 周运才, 李冯纬. 粉砂地层盾构隧道开挖面稳定性离心试验及数值模拟 [J]. 岩土力学, 2016, 37(11): 3324-3328, 3335.
LÜ X L, ZHOU Y C, LI F D. Centrifuge model test and numerical simulation of stability of excavation face of shield tunnel in silty sand [J]. Rock and Soil Mechanics, 2016, 37(11): 3324-3328, 3335.
[12] 孔德森, 滕森, 赵明凯, 等. 盾构隧道开挖面改进三维模型和临界支护压力研究 [J]. 隧道建设, 2023, 43(9): 1463-1472.
KONG D S, TENG S, ZHAO M K, et al. An improved three-dimensional model of shield tunnel face and its stability study [J]. Tunnel Construction, 2023, 43(9): 1463-1472.
[13] 钟久强. 富水砂层-泥质粉砂岩复合地层盾构隧道掌子面稳定性研究 [D]. 南昌: 华东交通大学, 2022.
ZHONG J Q. Study on stability of shield tunnel face in water-rich sand layer-argillaceous siltstone composite stratum [D]. Nanchang: East China Jiaotong University, 2022.
[14] SENENT S, JIMENEZ R. A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse [J]. Tunnelling and Underground Space Technology, 2015, 47: 182-192.
[15] ALAGHA A S N, CHAPMAN D N. Numerical modelling of tunnel face stability in homogeneous and layered soft ground [J]. Tunnelling and Underground Space Technology, 2019, 94: 103096.
[16] 邓聚龙. 灰色系统基本方法 [M]. 武汉: 华中科技大学出版社, 2005.
DENG J L. The primary methods of grey system theory [M]. Wuhan: Huazhong University of Science and Technology Press, 2005.
[17] 刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用 [M]. 5 版. 北京: 科学出版社, 2010.
LIU S F, DANG Y G, FANG Z G, et al. Grey system theory and its application [M]. 5th ed. Beijing: Science Press, 2010.
[18] 朱丹. 隧道施工扰动结合地下水对临近管线影响分析及防治措施研究 [D]. 绵阳: 西南科技大学, 2023.
ZHU D. Analysis of the influence of tunnel construction disturbance combined with groundwater on adjacent pipelines and prevention measures [D]. Mianyang: Southwest University Of Science And Technology, 2023.
[19] 章光, 朱维申. 参数敏感性分析与试验方案优化 [J]. 岩土力学, 1993, 14(1): 51-58.
ZHANG G, ZHU W S. Parameter sensitivity analysis and optimizing for test programs [J]. Rock and Soil Mechanics, 1993, 14(1): 51-58.
[20] 王辉, 陈卫忠. 嘎隆拉隧道围岩力学参数对变形的敏感性分析 [J]. 岩土工程学报, 2012, 34(8): 1548-1553.
WANG H, CHEN W Z. Sensitivity analysis of mechanical parameters to deformation of surrounding rock in Galongla tunnel [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1548-1553.
[21] LEE I M, NAM S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels [J]. Tunnelling and Underground Space Technology, 2001, 16(1): 31-40.

相似文献/References:

[1]丁祖德,彭立敏,陈松洁..盾构隧道基底软硬过渡地段列车振动响应分析[J].郑州大学学报(工学版),2010,31(03):87.[doi:10.3969/j.issn.1671-6833.2010.03.022]
[2]丁祖德,彭立敏,李兴龙..水下盾构隧道联络通道地震响应分析[J].郑州大学学报(工学版),2010,31(05):65.[doi:10.3969/j.issn.1671-6833.2010.05.016]

备注/Memo

备注/Memo:
收稿日期:2025-04-12;修订日期:2025-06-16
基金项目:国家自然科学基金资助项目(51878623;52279144)
通信作者:郑元勋(1978— ) ,男,河南驻马店人,郑州大学教授,博士,博士生导师,主要从事基础设施检测与加固方面的研究,E-mail:yxzheng@zzu.edu.cn。
更新日期/Last Update: 2026-01-16