[1]王明东,周政宇,杨宏杰,等.考虑光伏预测误差和并网波动率的储能容量配置[J].郑州大学学报(工学版),2025,46(06):75-83.[doi:10.13705/j.issn.1671-6833.2025.06.005]
 WANG Mingdong,ZHOU Zhengyu,YANG Hongjie,et al.Consideration of Dual-layer Hybrid Energy Storage Capacity Configuration Accounting for Photovoltaic Forecasting Errors and Grid Fluctuation Rates[J].Journal of Zhengzhou University (Engineering Science),2025,46(06):75-83.[doi:10.13705/j.issn.1671-6833.2025.06.005]
点击复制

考虑光伏预测误差和并网波动率的储能容量配置()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年06期
页码:
75-83
栏目:
出版日期:
2025-10-22

文章信息/Info

Title:
Consideration of Dual-layer Hybrid Energy Storage Capacity Configuration Accounting for Photovoltaic Forecasting Errors and Grid Fluctuation Rates
文章编号:
1671-6833(2025)06-0075-09
作者:
王明东1 周政宇1 杨宏杰2 李忠文1
1.郑州大学 电气与信息工程学院,河南 郑州 450001;2.黄河勘测规划设计研究院有限公司,河南 郑州 450003
Author(s):
WANG Mingdong1 ZHOU Zhengyu1 YANG Hongjie2 LI Zhongwen1
1.School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; 2.Yellow River Engineering Consulting Co., Ltd., Zhengzhou University, Zhengzhou 450003, China
关键词:
光伏发电 混合储能 等年值成本 补偿预测误差 平抑并网波动 双层规划模型
Keywords:
photovoltaic power generation hybrid energy storage levelized annual cost compensation for prediction error grid fluctuation smoothing bilevel planning model
分类号:
TM73TM615TM711
DOI:
10.13705/j.issn.1671-6833.2025.06.005
文献标志码:
A
摘要:
为满足并网要求并保障电力系统的稳健运行,提出了一种以降低光伏预测误差、平抑并网功率波动以及最小化等年值成本为目标的双层优化模型。上层规划旨在实现等年值成本最小化,其成本构成包括系统的投资、设备更换、维护费用以及碳排放效益成本。为提升系统经济性,提出了一种模糊遗传粒子群算法对模型进行优化分析;在下层规划中,模型以最小化预测误差和并网波动率为目标。基于超级电容器和蓄电池的不同特性,构建了充放电功率分配策略,从而提升系统的响应速度和延长蓄电池循环寿命。采用求解器进行控制,以实现对光伏预测误差的补偿和平滑光伏输出波动。最后,基于上述模型构建模型评估指标函数,并以某光伏电站为例进行案例分析,结果表明:所提算法在此模型中拥有更快的收敛速度和更寻优能力,同时优化后模型相较于优化前,预测误差的RMSE、MAPE分别降低99.95%和99.97%;最大并网波动率降低96.08%,验证了所提策略的有效性和实用性。
Abstract:
To meet grid connection requirements and ensure robust operation of the power system, a two-layer optimization model was proposed with objectives of reducing PV prediction errors, smoothing grid-connected power fluctuations, and minimizing annual equivalent costs. The upper-layer planning aimed to minimize annual equivalent costs, which included system investment, equipment replacement, maintenance costs, and carbon emission benefit costs. To improve system economic efficiency, a fuzzy genetic particle swarm algorithm was developed to optimize and analyze the model. In the lower-layer planning, the model aimed to minimize prediction errors and grid connection volatility. Based on distinct characteristics of supercapacitors and batteries, a charging-discharging power allocation strategy was constructed to enhance system response speed and extend battery cycle life. A solver was employed for control implementation to achieve PV prediction error compensation and PV output fluctuation smoothing. Finally, a model evaluation index function was established based on the proposed framework, with a PV power plant serving as a case study. Results demonstrated that the proposed algorithm exhibited faster convergence speed and superior optimization capability in this model. The RMSE and MAPE of prediction errors were reduced by 99.95% and 99.97% respectively, while the maximum grid connection fluctuation rate decreased by 96.08% after optimization. These findings verified the effectiveness and practicality of the proposed strategy.

参考文献/References:

[1]丁明, 张颖媛, 茆美琴, 等. 包含钠硫电池储能的微网系统经济运行优化[J]. 中国电机工程学报, 2011, 31(4): 7-14. 

DING M, ZHANG Y Y, MAO M Q, et al. Economic operation optimization for microgrids including Na/S battery storage[J]. Proceedings of the CSEE, 2011, 31(4): 714. 
[2]李建林, 袁晓冬, 郁正纲, 等. 利用储能系统提升电网电能质量研究综述[J].电力系统自动化, 2019, 43 (8): 15-24. 
LI J L, YUAN X D, YU Z G, et al. Comments on power quality enhancement research for power grid by energy storage system[J]. Automation of Electric Power Systems, 2019, 43(8): 15-24. 
[3]闫群民, 刘语忱, 董新洲, 等. 基于CEEMDAN-HT的平抑光伏出力混合储能容量优化配置[J]. 电力系统保护与控制, 2022, 50(21): 43-53. 
YAN Q M, LIU Y C, DONG X Z, et al. Hybrid energy storage capacity optimization configuration for smoothing PV output based on CEEMDAN-HT[J]. Power System Protection and Control, 2022, 50(21): 43-53. 
[4]马超, 董森, 华正操. 多种光伏组件组合光伏电站的混合储能容量优化配置研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(11): 1128-1135. 
MA C, DONG S, HUA Z C. Capacity configuration of hybrid energy storage system for PV power stations using multiple solar trackers[J]. Journal of Tianjin University (Science and Technology), 2020, 53(11): 1128-1135. 
[5]李相俊, 马会萌, 姜倩. 新能源侧储能配置技术研究综述[J]. 中国电力, 2022, 55(1): 13-25. 
LI X J, MA H M, JIANG Q. Review of energy storage configuration technology on renewable energy side[J]. Electric Power, 2022, 55(1): 13-25. 
[6]余洋, 陆文韬, 陈东阳, 等. 光伏波动平抑下改进Kmeans的电池储能动态分组控制策略[J]. 电力系统保护与控制, 2024, 52(7): 1-11. 
YU Y, LU W T, CHEN D Y, et al. Dynamic grouping control strategy for battery energy storage based on improved K-means under photovoltaic fluctuation suppression[J]. Power System Protection and Control, 2024, 52 (7): 1-11. 
[7]段俊东, 付子恒, 张普胜, 等. 平滑含DG配网功率波动的储能容量优化研究[J]. 郑州大学学报(工学版), 2020,41(5): 50-54. 
DUAN J D, FU Z H, ZHANG P S, et al. Optimized study of energy storage systems capacity for power smoothing of distribution containing DG[J]. Journal of Zhengzhou University (Engineering Science), 2020,41(5): 50-54. 
[8]陈阳, 谢丽蓉, 马兰, 等. 考虑光伏预测误差兼顾平抑波动的双层储能运行策略[J]. 电力工程技术, 2023, 42(1): 70-79. 
CHEN Y, XIE L R, MA L, et al. Double-layer energy storage operation strategy that takes into account PV output error and smooths out fluctuations[J]. Electric Power Engineering Technology, 2023, 42(1): 70-79.
[9]史如新, 王德顺, 余涛, 等. 基于NARX神经网络-小波分解光伏发电功率预测[J]. 郑州大学学报(工学版), 2020,41(6): 79-84. 
SHI R X, WANG D S, YU T, et al. Prediction of photovoltaic power generation based on NARX neural networkwavelet decomposition[J]. Journal of Zhengzhou University (Engineering Science), 2020,41(6): 79-84. 
[10]于波, 沈啸轩. 浅谈基于混合储能的光伏发电并网系统的能量管理及协调控制[J]. 中国设备工程, 2021 (13): 194-195. 
YU B, SHEN X X. An overview of energy management and coordinated control of grid-connected photovoltaic power generation system based on hybrid energy storage [J]. China Plant Engineering, 2021(13): 194-195. 
[11] BLUDSZUWEIT H, DOMINGUEZ-NAVARRO J A. A probabilistic method for energy storage sizing based on wind power forecast uncertainty[J]. IEEE Transactions on Power Systems, 2011, 26: 1651-1658. 
[12]程龙, 张方华. 用于混合储能系统平抑功率波动的小波变换方法[J]. 电力自动化设备, 2021, 41(3): 100104,128. 
CHENG L, ZHANG F H. Wavelet transform method for hybrid energy storage system smoothing power fluctuation [J]. Electric Power Automation Equipment, 2021, 41 (3): 100-104,128. 
[13]丁逸行, 徐青山, 吕亚娟, 等. 考虑需量管理的用户侧储能优化配置[J]. 电网技术, 2019, 43(4): 11791186. 
DING Y X, XU Q S, LV Y J, et al. Optimal configuration of user-side energy storage considering power demand management[J]. Power System Technology, 2019, 43 (4): 1179-1186. 
[14]陈崇德, 郭强, 宋子秋, 等. 计及碳收益的风电场混合储能容量优化配置[J]. 中国电力, 2022,55(12): 22-33. 
CHEN C D, GUO Q, SONG Z Q, et al. Optimal configuration of hybrid energy storage capacity for wind farms considering carbon trading revenue[J]. Electric Power, 2022,55(12): 22-33. 
[15]李雯雯. 多微网混合储能系统的功率协同控制与容量优化配置研究[D]. 成都:西南交通大学, 2021. 
LI W W. Research on power cooperative controland capacity optimization configuration ofmulti-microgrid hybrid energy storagesystem[D]. Chengdu:Southwest Jiaotong University, 2021. 
[16]刘慧文. 独立运行风光柴储微电网多目标容量优化配置研究[D]. 呼和浩特:内蒙古工业大学, 2021. 
LIU H W. Research on multi-objective optimal capacity configuration for standalone microgrid with WT-PV-DEBES[D]. Hohhot:Inner Mongolia University of Technology, 2021. 
[17]李双拾. 孤立风/光/储直流微电网配置优化研究[D]. 太原:太原理工大学, 2021. 
LI S S. Optimization of isolated wind/solar/storagemicrogrid [D]. Taiyuan:Taiyuan University of Technology, 2021. 
[18]路民辉,孙文文,何国庆.《光伏发电系统接入配电网技术规定》标准解读和修订建议(英文)[J]. 中国标准化(英文版),2022(1):62-65. 
LU M H, SUN W W, HE G Q. Interpretation and revision proposals of GB/T 29319—2012, technical require- ments for connecting photovoltaic power system to distribution network[J]. China Standardization, 2022(1): 62-65. 
[19]皮晟源,刘牧阳,陈雨田,等.基于IPOA-VMD的风储联合发电系统混合储能容量配置[J/OL].电力系统及其自动化学报,2025:1-10(2025-01-17)[2025-0218]. https:∥link. cnki. net/doi/10. 19635/ j. cnki. csuepsa.00158. 
PI S Y, LIU M Y, CHEN Y T, et al. Hybrid Energy Storage Capacity Allocation for Wind-storage Co-generation System Based on IPOA-VMD [J/OL]. Proceedings of the CSU-EPSA,2025:1-10(2025-01-17)[2025-0218]. https:∥link. cnki. net/doi/10. 19635/ j. cnki. csuepsa.00158. 
[20]欧阳海滨, 全永彬, 高立群, 等. 基于混合遗传粒子群优化算法的层次路径规划方法[J]. 郑州大学学报(工学版), 2020,41(4): 34-40. 
OUYANG H B, QUAN Y B, GAO L Q, et al. Hierarchical path planning method for mobile robots based on hybrid genetic particle swarm optimization algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2020,41(4): 34-40.

相似文献/References:

[1]许天.并联式支路光伏发电系统的研究与仿真[J].郑州大学学报(工学版),2016,37(02):25.[doi:10.3969/j.issn.1671-6833.201505023]
 Xu Tian,Chen Xiaoqiang.Research and simulation of parallel branch photovoltaic power generation system[J].Journal of Zhengzhou University (Engineering Science),2016,37(06):25.[doi:10.3969/j.issn.1671-6833.201505023]

更新日期/Last Update: 2025-10-21