[1]窦 明,曹莹澍,米庆彬,等.花园口-夹河滩段湿地景观格局变化及水沙要素响应关系[J].郑州大学学报(工学版),2025,46(06):135-143.[doi:10.13705/j.issn.1671-6833.2025.03.023]
 DOU Ming,CAO Yingshu,MI Qingbin,et al.Changes in Wetland Landscape Patterns and the Relationship Between Water-sediment Elements in Huayuankou-Jiahetan Section[J].Journal of Zhengzhou University (Engineering Science),2025,46(06):135-143.[doi:10.13705/j.issn.1671-6833.2025.03.023]
点击复制

花园口-夹河滩段湿地景观格局变化及水沙要素响应关系()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年06期
页码:
135-143
栏目:
出版日期:
2025-10-22

文章信息/Info

Title:
Changes in Wetland Landscape Patterns and the Relationship Between Water-sediment Elements in Huayuankou-Jiahetan Section
文章编号:
1671-6833(2025)06-0135-09
作者:
窦 明12 曹莹澍1 米庆彬1 丁俊祥2 王 涵1 潘 登3
1.郑州大学 水利与交通学院,河南 郑州 450001;2.郑州大学 生态与环境学院,河南 郑州 450001;3.河南省自然资源监测和国土整治院,河南 郑州 450016
Author(s):
DOU Ming12 CAO Yingshu1 MI Qingbin1 DING Junxiang2 WANG Han1 PAN Deng3
1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; 2.School of Ecology and Environment,Zhengzhou University, Zhengzhou 450001, China; 3. Institute of Natural Resources Monitoring and Comprehensive Land Improvement of Henan Province, Zhengzhou 450016,Chian
关键词:
景观格局变化 水沙要素 响应关系 花园口-夹河滩
Keywords:
landscape pattern change water-sediment elements response relationship Huayuankou-Jiahetan
分类号:
P33X171.1TV147
DOI:
10.13705/j.issn.1671-6833.2025.03.023
文献标志码:
A
摘要:
黄河下游花园口至夹河滩段湿地是黄河廊道生态系统的重要组成部分,其形成、演变和退化与黄河独特的水沙情势变动相关。为明确该区段不同类型湿地景观格局演变特征及其对径流量、输沙量和水位等水沙要素变化的响应机制,以黄河下游花园口至夹河滩段为研究区,利用1994—2023年12期Landsat卫星影像构建湿地景观数据库,通过土地利用转移矩阵和景观格局指数,定量分析湿地类型的时空变化、斑块特征和景观结构;并结合花园口水文站的径流量、水位、输沙量等数据,重点揭示湿地不同类型景观格局特征与水沙要素之间的响应关系。结果表明:①1994—2023年花园口站径流量呈上升趋势,输沙量与水位整体呈下降趋势;②研究区内河流、坑塘、滩涂和荒草等湿地类型的面积整体呈萎缩态势,年均减少5.90 km2,湿地向耕地的转化最为显著;③景观水平上,调水调沙政策实施后,湿地景观整体连通性增强,景观丰富度和均匀度有所提升且趋于稳定;④坑塘、滩涂和荒草湿地中最大斑块指数、平均斑块面积、蔓延度指数与花园口站输沙量以及水位有显著的相关关系,与输沙量的相关关系较强。研究结果可为黄河流域湿地生态保护和修复提供理论依据。
Abstract:
The wetland area between Huayuankou and Jiahetan in the lower reaches of the Yellow River is a vital component of the Yellow River corridor ecosystem. Its formation, evolution, and degradation are closely linked to the unique variations in the river′s water and sediment dynamics.To clarify the evolution characteristics of different types of wetland landscape patterns in this section and their response mechanisms to changes in water and sediment elements such as runoff, sediment transport volume and water level, in this study the section of the Yellow River from Huayuankou to Jiahetan was examined. Utilizing 12 phases of Landsat satellite imagery from 1994 to 2023, a wetland landscape database was constructed. The study employed land use transfer matrices and landscape pattern index methods to quantitatively analyze the spatiotemporal changes in wetland types, patch characteristics, and landscape structure.Subsequently, by integrating the flow, water level, sediment concentration and other data from the Huayuankou station, the response relationship between the landscape pattern characteristics of different types of wetlands and water and sediment elements was highlighted.The results indicated that: ①From 1994 to 2023, the runoff at the Huayuankou Station showed an upward trend, while sediment discharge and water levels exhibited an overall downward trend.②The areas of wetland types such as rivers, ponds, mudflats, and wild grasslands in the study area showed an overall shrinking trend, with an average annual reduction of 5.90 km2. The most significant transformation was the conversion of wetlands into farmland. ③At the landscape level, following the implementation of the water and sediment regulation policy, the overall connectivity of wetland landscapes improved, while landscape richness and evenness increased and tended to stabilize. ④In pond wetlands, mudflat wetlands, and wild grassland wetlands, indices such as the largest patch index, mean patch area, and contagion index showed significant correlations with sediment discharge and water level at the Huayuankou Station, with a particularly stronger correlation with sediment discharge. The findings of this study provided a theoretical basis for wetland ecological protection and restoration in the Yellow River Basin.

参考文献/References:

[1]徐晓龙, 王新军, 朱新萍, 等. 1996—2015年巴音布鲁克天鹅湖高寒湿地景观格局演变分析[J]. 自然资源学报, 2018, 33(11): 1897-1911. 

XU X L, WANG X J, ZHU X P, et al. Landscape pattern changes in alpine wetland of bayanbulak swan lake during 1996—2015[J]. Journal of Natural Resources, 2018, 33(11): 1897-1911. 
[2]程亦菲, 夏军强, 周美蓉, 等. 黄河下游游荡段过流能力调整对水沙条件与断面形态的响应[J]. 水科学进展, 2020, 31(3): 337-347. 
CHENG Y F, XIA J Q, ZHOU M R, et al. Response of flood discharge capacity to the incoming flow and sediment regime and channel geometry in the braided reach of the Lower Yellow River[J]. Advances in Water Science, 2020, 31(3): 337-347. 
[3]郝伏勤, 高传德, 黄锦辉, 等. 黄河下游河道湿地浅析[J]. 人民黄河, 2005, 27(4): 5-7, 63. 
HAO F Q, GAO C D, HUANG J H, et al. A brief analysis on channel wetlands of the Lower Yellow River[J]. Yellow River, 2005, 27(4): 5-7, 63. 
[4]李健明, 祁雪姣, 李佳君, 等. 黄河源区1990—2020年景观格局动态及驱动因素分析[J]. 水生态学杂志, 2025, 46(1): 20-33. 
LI J M, QI X J, LI J J, et al. Landscape pattern dynamics and driving forces in the Yellow River source area, 1990—2020[J]. Journal of Hydroecology, 2025, 46 (1): 20-33. 
[5]LI S N, WANG G X, DENG W, et al. Influence of hydrology process on wetland landscape pattern: a case study in the Yellow River Delta[J]. Ecological Engineering, 2009, 35(12): 1719-1726. 
[6]张爱静, 董哲仁, 赵进勇, 等. 黄河调水调沙期河口湿地景观格局演变[J]. 人民黄河, 2013, 35(7): 69-72. 
ZHANG A J, DONG Z R, ZHAO J Y, et al. The evolution of wetland landscape pattern of the Yellow River Estuary during water and sediment regulation[J]. Yellow River, 2013, 35(7): 69-72. 
[7]DOU X Y, GUO H D, ZHANG L, et al. Dynamic landscapes and the influence of human activities in the Yellow River Delta wetland region[J]. Science of the Total Environment, 2023, 899: 166239. 
[8]卢晓宁, 张静怡, 洪佳, 等. 基于遥感影像的黄河三角洲湿地景观演变及驱动因素分析[J]. 农业工程学报, 2016, 32(增刊1): 214-223. 
LU X N, ZHANG J Y, HONG J, et al. Analysis of wetland landscape evaluation and its driving factors in Yellow River Delta based on remote sensing image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S1): 214-223. 
[9]QIU M Q, LIU Y X, CHEN P, et al. Spatio-temporal changes and hydrological forces of wetland landscape pattern in the Yellow River Delta during 1986—2022[J]. Landscape Ecology, 2024, 39(3): 51. 
[10]WEI C X, GUO B, FAN Y W, et al. The change pattern and its dominant driving factors of wetlands in the Yellow River Delta based on sentinel-2 images[J]. Remote Sensing, 2022, 14(17): 4388. 
[11]陈昂, 隋欣, 王东胜, 等. 黄河下游河道沿岸景观格局时空动态变化研究[J]. 水电能源科学, 2014, 32 (11): 107-110. 
CHEN A, SUI X, WANG D S, et al. Spatial and temporal dynamic variation research of Yellow River downstream coastal landscape[J]. Water Resources and Power, 2014, 32(11): 107-110. 
[12]张金良, 李岩, 白玉川, 等. 黄河下游花园口-高村河段泥沙时空分布及地貌演变[J]. 水利学报, 2021, 52 (7): 759-769. 
ZHANG J L, LI Y, BAI Y C, et al. Sediment temporal-spatial distribution and geomorphological evolution in the Huayuankou-Gaocun reach in the lower Yellow River[J]. Journal of Hydraulic Engineering, 2021, 52(7): 759-769. 
[13]申志锋. 灌区、沙碱与稻作: 近代以来豫北黄卫之间土地生态变迁与民众生计适应[J]. 清华大学学报(哲学社会科学版), 2024, 39(4): 77-99, 230. 
SHEN Z F. Irrigation district, sand alkali and paddy cultivation: land ecological changes and people′s livelihood adaptation between the Yellow River and the Wei River in northern Henan since the modern times[J]. Journal of Tsinghua University (Philosophy and Social Sciences), 2024, 39(4): 77-99, 230. 
[14] GUO P F, ZHANG F F, WANG H Y. The response of ecosystem service value to land use change in the middle and lower Yellow River: a case study of the Henan section[J]. Ecological Indicators, 2022, 140: 109019. 
[15]布仁仓, 胡远满, 常禹, 等. 景观指数之间的相关分析[J]. 生态学报, 2005, 25(10): 2764-2775. 
BU R C, HU Y M, CHANG Y, et al. A correlation analysis on landscape metrics[J]. Acta Ecologica Sinica, 2005, 25(10): 2764-2775. 
[16]WANG Q X, ZHANG P Y, CHANG Y H, et al. Landscape pattern evolution and ecological risk assessment of the Yellow River Basin based on optimal scale[J]. Ecological Indicators, 2024, 158: 111381.
[17]WANG Q, WANG H J. Spatiotemporal dynamics and evolution relationships between land-use/ land cover change and landscape pattern in response to rapid urban sprawl process: a case study in Wuhan, China[J]. Ecological Engineering, 2022, 182: 106716. 
[18]梁加乐, 陈万旭, 李江风, 等. 黄河流域景观破碎化时空特征及其成因探测[J]. 生态学报, 2022, 42 (5): 1993-2009. 
LIANG J L, CHEN W X, LI J F, et al. Spatiotemporal patterns of landscape fragmentation and causes in the Yellow River Basin[J]. Acta Ecologica Sinica, 2022, 42 (5): 1993-2009. 
[19]张会萍, 肖曼, 曾曼芸, 等. 河南段黄河湿地水文因子对植物多样性的影响[J]. 河南农业大学学报, 2022, 56(5): 822-829. 
ZHANG H P, XIAO M, ZENG M Y, et al. Effects of hydrological environment on plant diversity in the Yellow River Wetland of Henan Section[J]. Journal of Henan Agricultural University, 2022, 56(5): 822-829. 
[20]李雅, 赵晓东, 梁少民, 等. 黄河干流河南段河岸带湿地植物分布特征[J]. 人民黄河, 2023, 45(增刊1): 54-55. 
LI Y, ZHAO X D, LIANG S M, et al. Distribution characteristics of wetland plants in the riparian zone of Henan section of the Yellow River mainstream[J]. Yellow River, 2023, 45(S1): 54-55. 
[21]万俊锋, 宋一帆, 郭林, 等. 人为干扰对黄河湿地植物群落的影响及其机制[J]. 郑州大学学报(工学版), 2024, 45(4): 102-110. 
WAN J F, SONG Y F, GUO L, et al. Effects of human disturbances on plant community of the Yellow River wetland and its mechanisms[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(4): 102-110. 
[22]左其亭, 王鹏抗, 张志卓, 等. 黄河流域水资源利用水平及提升途径[J]. 郑州大学学报(工学版), 2023, 44(3): 12-19. 
ZUO Q T, WANG P K, ZHANG Z Z, et al. Utilization level and improvement approach of water resources in the Yellow River Basin[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(3): 12-19.

更新日期/Last Update: 2025-10-22