[1]李海涛,耿瑞霖,王雅雯,等.直线导轨平行度误差对工作台运动误差的影响规律[J].郑州大学学报(工学版),2025,46(03):118-127.[doi:10.13705/j.issn.1671-6833.2025.03.022]
 LI Haitao,GENG Ruilin,WANG Yawen,et al.Influence Law of Parallelism Error in Linear Guide Rail on Motion Error of Worktable[J].Journal of Zhengzhou University (Engineering Science),2025,46(03):118-127.[doi:10.13705/j.issn.1671-6833.2025.03.022]
点击复制

直线导轨平行度误差对工作台运动误差的影响规律()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
46
期数:
2025年03期
页码:
118-127
栏目:
出版日期:
2025-05-13

文章信息/Info

Title:
Influence Law of Parallelism Error in Linear Guide Rail on Motion Error of Worktable
文章编号:
1671-6833(2025)03-0118-10
作者:
李海涛 耿瑞霖 王雅雯 陈敬林
陕西科技大学 机电工程学院,陕西 西安 710021
Author(s):
LI Haitao GENG Ruilin WANG Yawen CHEN Jinglin
College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
关键词:
线性工作台 平行度误差 误差耦合 映射模型 运动误差
Keywords:
linear worktable parallelism error error coupling mapping model motion error
分类号:
TG156
DOI:
10.13705/j.issn.1671-6833.2025.03.022
文献标志码:
A
摘要:
现有研究多以线性工作台整体为研究对象,只能获得不同误差对一维线性工作台的局部影响规律,无法完全揭示不同类型误差之间的耦合机制,以及对工作台整体运动误差的影响规律。针对这一不足,以双导轨四滑块线性工作台为研究对象,通过动结合面刚度等效,求解滑块约束刚度矩阵,进而联合滑块在导轨和工作台双重约束下工作台协调变形以后的位姿状态,建立了一维线性工作台的误差耦合模型。基于误差耦合模型,通过齐次变换将多项平行度误差映射到滑块初始误差上,最终建立导轨安装平行度误差到工作台运动误差的映射模型。基于映射模型,模拟分析了平行度误差对工作台运动误差的影响规律,并通过有限元模拟及实验验证了结果的一致性。实验结果表明:平行度误差映射模型与有限元模型之间的最大误差不超过9.8%,不同类型平行度误差对线性工作台影响程度差异较大,通过降低偏摆和俯仰平行度误差,可以大幅度降低工作台整体误差。所提方法为线性工作台误差补偿和精度设计提供了理论支撑。
Abstract:
Most of the existing studies took the entire linear worktable as the research target, and merely obtained the local influence laws of different errors on the one-dimensional linear worktable and failed to fully disclosed the coupling mechanisms among different types of errors as well as the influence laws on the overall motion error of the worktable. In response to this deficiency, in this study, the linear worktable with double guide rails and four sliders was taken as the research target. By means of the equivalent stiffness of the dynamic interface, the constraint stiffness matrix of the sliders was solved. Then, combined with the position and posture state of the worktable after the coordinated deformation of the sliders with the double constraints of the guide rails and the worktable, the error coupling model of the one-dimensional linear worktable was established. Based on the error coupling model, multiple parallelism errors were mapped onto the initial errors of the sliders through homogeneous transformation, and ultimately, the mapping model from the parallelism error of guide rail installation to the motion error of the worktable was established. Based on the mapping model, the influence laws of parallelism errors on the motion error of the worktable were simulated and analyzed, and the consistency of the results was verified through finite element simulation and experiments. The maximum error between the parallelism error mapping model and the finite element model did not exceed 9.8%.This study indicated that different types of parallelism errors had significantly different degrees of influence on the linear worktable. By reducing the parallelism errors of yaw and pitch, the overall error of the worktable could be greatly reduced. The proposed method provided a powerful theoretical support for the error compensation and precision design of linear worktables.

参考文献/References:

[1]FAN K C, CHEN H M, KUO T H. Prediction of machining accuracy degradation of machine tools[J]. Precision Engineering, 2012, 36(2): 288-298. 

[2]HE G Y, SHI PP, GUO L Z, et al. A linear model for the machine tool assembly error prediction considering roller guide error and gravity-induced deformation[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(15): 2939-2950.
[3]吴煜. 机床移动副精度模型与装配工艺优化研究[D]. 大连: 大连理工大学, 2018. 
WU Y. Research on precision model and assembly process optimization of machine tool moving pair[D]. Dalian: Dalian University of Technology,2018. 
[4]马军旭, 赵万华, 张根保. 国产数控机床精度保持性分析及研究现状[J]. 中国机械工程, 2015,26(22): 3108-3115. 
MA J X, ZHAO W H, ZHANG G B. Research statusand analyses on accuracy retentivity of domestic CNC machine tools[J]. China Mechanical Engineering, 2015, 26(22): 3108-3115. 
[5]吴煜, 申会鹏, 孙璇,等. 机床弹性移动副五维误差预测模型[J]. 华中科技大学学报(自然科学版), 2019, 47(11): 121-126. 
WU Y, SHEN H P, SUN X, et al. 5D error prediction model for elastic prismatic pair of machine tool[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(11): 121-126. 
[6]王秀山, 杨建国, 闫嘉钰. 基于多体系统理论的五轴机床综合误差建模技术[J]. 上海交通大学学报, 2008,42(5): 761-764, 769. WANG X S, YANG J G, YAN J Y. Synthesis error modeling of the five-axis machine tools based on multi-body system theory[J]. Journal of Shanghai Jiao Tong University, 2008, 42(5): 761-764, 769. 
[7]LI H T, GUOJ J, DENG Y F, et al. Identification of geometric deviations inherent to multi-axis machine tools based on the pose measurement principle[J]. Measurement Science and Technology, 2016, 27(12): 125008. 
[8]TAO W J, ZHONG Y, FENG H T, et al. Model for wear prediction of roller linear guides[J]. Wear, 2013, 305 (1/2): 260-266. 
[9]FAN K C, CHEN M J, HUANG W M. A six-degree-offreedom measurement system for the motion accuracy of linear stages[J]. International Journal of Machine Tools and Manufacture, 1998, 38(3): 155-164. 
[10]陈汀, 黄其柏. 一种计及滑块裙部变形的滚珠直线导轨副模态分析方法[J]. 中国机械工程, 2012,23(2): 150-154. 
CHEN T, HUANG Q B. A modal analysis method of a linear ball guide incorporating flexibility of the carriage [J]. China Mechanical Engineering, 2012, 23 (2): 150-154. 
[11]刘耀, 黄玉美. 机床滚珠导轨中圆柱面-球面结合面静特性分析及试验研究[J]. 机械工程学报, 2013,49 (21): 25-30. 
LIU Y, HUANG Y M. Theoretical analysis and experimental study on static characteristics of the cylindricalspherical joint surfaces of linear ball guide on machine tool[J]. Journal of Mechanical Engineering, 2013, 49 (21): 25-30. 
[12] ZHANG W, WANG M, LE B B. Modeling and experiment on contact stiffness and accuracy analysis of ball linear guide feed unit[J]. Journal of Harbin Institute of Technology (New Series), 2019,26(1): 30-41. 
[13] ZOU H T, WANG B L. Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation[J]. Tribology International, 2015, 92: 472-484. 
[14] TANG H, DUAN J, ZHAO Q C. A systematic approach on analyzing the relationship between straightness & angular errors and guideway surface in precise linear stage [J]. International Journal of Machine Tools and Manufacture, 2017, 120: 12-19. 
[15] ZHANG P H, CHEN Y L, ZHANG C Y, et al. Influence of geometric errors of guide rails and table on motion errors of hydrostatic guide ways under quasi-static condition [J]. International Journal of Machine Tools & Manufacture2018,125: 55-67. 
[16]马雅丽, 李阳阳. 基于几何误差不确定性的滚动导轨运动误差研究[J]. 机械工程学报, 2019,55(5): 11-18. 
MA Y L, LI Y Y. Motion error of rolling guide based on uncertainty of geometric error[J]. Journal of Mechanical Engineering, 2019, 55(5): 11-18. 
[17]何改云, 王凯, 郭龙真, 等. 导轨平行度误差对工作台运动误差影响的建模与分析[J]. 机械科学与技术, 2015, 34(11): 1705-1709. 
HE G Y, WANG K, GUO L Z, et al. Influencing modeling and analysis of guide parallelism error on table motion error[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(11): 1705-1709. 
[18] SHI C C, WANG Z Z, PENG Y F. Influence of relative difference between paired guide rails on motion accuracy in closed hydrostatic guideways[J]. Journal of Mechanical Science and Technology, 2020, 34(2): 631-648. 
[19] KIM G H, HAN J A, LEE S K. Motion error estimation of slide table on the consideration of guide parallelism and pad deflection[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15 ( 9): 1935-1946.

更新日期/Last Update: 2025-05-22