ZHANG W Y, MA K K, GUO Z H, et al. Multistep prediction of wind speed based on grey wolf algorithm and extreme learning machine[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(2): 89-96.
[2]WANG S, LI B, LI G Z, et al. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration [J]. Applied Energy, 2021, 292: 116851.
[3]LIU W, LIU Y M, FU L, et al. Wind power forecasting method based on bidirectional long short-term memory neural network and error correction[J]. Electric Power Components and Systems, 2021, 49 ( 13/14): 1169-1180.
[4]LI Z, XU R S, LUO X R, et al. Short-term wind power prediction based on modal reconstruction and CNNBiLSTM[J]. Energy Reports, 2023, 9: 6449-6460.
[5]李润金, 李丽霞. 基于VMD-CNN-LSTM模型的短期风电功率预测[J]. 沈阳工程学院学报(自然科学版), 2024, 20(1): 6-13.
LI R J, LI L X. Short-term wind power prediction based on VMD-CNN-LSTM model[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2024, 20(1): 6-13.
[6]任鹏, 付文杰, 申洪涛, 等. 基于竞争学习机制的LSTM风电多目标区间预测[J]. 计算机应用与软件, 2024, 41(6): 305-311, 349.
REN P, FU W J, SHEN H T, et al. Multiple objective interval prediction of LSTM wind power based on competitive learning mechanism[J]. Computer Applications and Software, 2024, 41(6): 305-311, 349.
[7]陈申, 叶小岭, 熊雄, 等. 基于天鹰优化算法的短期风电功率区间预测[J]. 重庆理工大学学报(自然科学), 2023, 37(4): 304-314.
CHEN S, YE X L, XIONG X, et al. Short-term wind power interval prediction based on Aquila optimization algorithm[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(4): 304-314.
[8]韩丽, 于晓娇, 喻洪波, 等. 基于波动趋势分段的风电功率区间预测[J]. 电力系统自动化, 2023, 47 (18): 206-215.
HAN L, YU X J, YU H B, et al. Wind power interval prediction based on fluctuation trend segmentation[J]. Automation of Electric Power Systems, 2023, 47(18): 206-215.
[9]崔颢, 马平. 基于优化BP神经网络和非参数估计的风功率区间预测[J]. 电子设计工程, 2022, 30(13): 6-10.
CUI H, MA P. Wind power interval prediction based on optimized BP neural network and non-parametric estimation[J]. Electronic Design Engineering, 2022, 30(13): 6-10.
[10]吴亚钧, 王璐, 张金江. 基于IDBO-LightGBM的光伏阵列故障诊断方法[J/OL]. 电源学报, 2024: 1-15 (2024-04-26)[2024-12-13]. http:∥kns. cnki.net/ KCMS/detail/detail. aspx? filename = DYXB20240423 01E&dbname=CJFD&dbcode=CJFQ.
WU Y J, WANG L, ZHANG J J. Fault diagnosis method of photovoltaic array based on IDBO-LightGBM[J/OL]. China Industrial Economics, 2024: 1-15(2024-04-26) [2024-12-13]. http:∥kns.cnki.net/KCMS/detail/detail. aspx? filename=DYXB2024042301 E&dbname = CJFD&dbcode=CJFQ.
[11]郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946.
GUO Q, ZHENG Q X. Multi-strategy improved dung beetle optimizer and its application[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18 (4): 930-946.
[12] DEHGHANI M, TROJOVSKY P. Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in Mechanical Engineering, 2023, 8: 1126450.
[13]唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81.
TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81.
[14]赵志浩. 面向手机部件的目标区域检测算法的设计与实现[D]. 北京: 中国科学院大学(中国科学院沈阳计算技术研究所), 2020.
ZHAO Z H. Design and implementation of target area detection algorithm for mobile phone components[D]. Beijing: Institute of Computing Technology, Chinese Academy of Sciences, 2020.
[15]饶志, 王科, 谭俊丰, 等. 基于最优带宽的广东海上风电出力非参数核密度估计与分析[J]. 太阳能学报, 2023, 44(12): 274-282.
RAO Z, WANG K, TAN J F, et al. Non-parametric kernel density estimation and analysis of Guangdong offshore wind power output based on optimal bandwidth[J]. Acta Energiae Solaris Sinica, 2023, 44.
[16]宋绍剑, 姜屹远, 刘斌. 一种TCN的改进模型及其在短期光伏功率区间预测的应用[J]. 计算机应用研究, 2023, 40(10): 3064-3069.
SONG S J, JIANG Y Y, LIU B. Improved TCN model and its application in short-term photovoltaic power interval prediction[J]. Application Research of Computers, 2023, 40(10): 3064-3069.
[17]饶志, 杨再敏, 蒙文川, 等. 基于改进型非参数核密度估计法的南方区域风电出力特性分析[J]. 电网与清洁能源, 2022, 38(6): 81-88, 97.
RAO Z, YANG Z M, MENG W C, et al. An analysis of wind power output characteristics in Southern China Region based on improved non-parametric kernel density estimation[J]. Power System and Clean Energy, 2022, 38 (6): 81-88, 97.
[18]吴永斌, 张建忠, 邓富金, 等. 基于方差变化率判据四分位的风电场功率异常数据识别[J]. 电力工程技术, 2023, 42(4): 141-148.
WU Y B, ZHANG J Z, DENG F J, et al. Anomaly data identification of wind power in wind farm with the criterion of variance change rate and quartile[J]. Electric Power Engineering Technology, 2023, 42(4): 141-148.
[19]孙亚南, 黄越辉, 孙谊媊, 等. 基于运行数据的短期风电功率预测误差互补特性探析[J]. 电力系统自动化, 2021, 45(21): 215-223.
SUN Y N, HUANG Y H, SUN Y Q, et al. Operation data based analysis on complementary characteristics of short-term power prediction error for wind power[J]. Automation of Electric Power Systems, 2021, 45(21): 215-223.
[20]李津, 史加荣, 张琰妮, 等. 基于最大信息系数的短期太阳辐射协同估计[J]. 太阳能学报, 2023, 44 (9): 286-294.
LI J, SHI J R, ZHANG Y N, et al. Short-term solar radiation synergy estimation based on maximum information coefficient[J]. Acta Energiae Solaris Sinica, 2023, 44 (9): 286-294.