[1]FRIDMANL,BARBOTJP,PLESTANF. Recent trends in sliding mode control[M]. Stevenage, Herts, United Kingdom: The Institute of Engineering and Technology, 2016. [2]FENG Y, YU X H, HAN F L. On nonsingular terminal sliding-mode control of nonlinear systems[J]. Automatica, 2013, 49(6): 1715-1722.
[3]NGUYEN N P, OH H, MOON J, et al. Multivariable disturbance observer-based finite-time sliding mode attitude control for fixed-wing UAVs under matched and mismatched disturbances[J]. IEEE Control Systems Letters, 2023, 7: 1999-2004.
[4]王群京, 刘中阳, 李国丽, 等. 基于自适应干扰观测器的永磁球形电机连续非奇异终端滑模控制[J]. 电机与控制学报, 2022, 26(8): 66-78.
WANG Q J, LIU Z Y, LI G L, et al. Adaptive disturbance observer-based continuous nonsingular terminal sliding-mode control for permanent-magnet spherical actuator [J]. Electric Machines and Control, 2022, 26(8): 6678.
[5]ZEGHLACHE S, GHELLAB M Z, DJERIOUI A, et al. Adaptive fuzzy fast terminal sliding mode control for inverted pendulum-cart system with actuator faults[J]. Mathematics and Computers in Simulation, 2023, 210: 207-234.
[6]GUO X C, WEI G L. Disturbance observer-based fixedtime leader-following consensus control for multiple EulerLagrange systems: a non-singular terminal sliding mode scheme[J]. Journal of the Franklin Institute, 2023, 360 (9): 6463-6489.
[7]HONG M Q, GU X T, LIU L X, et al. Finite time extended state observer based nonsingular fast terminal sliding mode control of flexible-joint manipulators with unknown disturbance[J]. Journal of the Franklin Institute, 2023, 360(1): 18-37.
[8]MOBAYEN S, BAYAT F, DIN S U, et al. Barrier function-based adaptive nonsingular terminal sliding mode control technique for a class of disturbed nonlinear systems[J]. ISA Transactions, 2023, 134: 481-496.
[9]YAO M, XIAO X, TIAN Y, et al. A fast terminal sliding mode control scheme with time-varying sliding mode surfaces[J]. Journal of the Franklin Institute, 2021, 358 (10): 5386-5407.
[10] CUPERTINO F, NASO D, MININNO E, et al. Slidingmode control with double boundary layer for robust compensation of payload mass and friction in linear motors [J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1688-1696.
[11] CHEN J C, SHUAI Z B, ZHANG H, et al. Path following control of autonomous four-wheel-independent-drive electric vehicles via second-order sliding mode and nonlinear disturbance observer techniques[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2460-2469.
[12]WANG T Q, WANG B, YU Y, et al. Fast high-order terminal sliding-mode current controller for disturbance compensation and rapid convergence in induction motor drives[J]. IEEE Transactions on Power Electronics, 2023, 38(8): 9593-9605.
[13] ZHANG L, NAN H J, ZHAO Z Q, et al. Adaptive disturbance observer-based dual-loop integral-type fast terminal sliding mode control for micro spacecraft and its gimbal tracking device[J]. ISA Transactions, 2022, 130: 121-135.
[14] SU X J, QING F D, CHANG H B, et al. Trajectory tracking control of human support robots via adaptive sliding-mode approach[J]. IEEE Transactions on Cybernetics, 2024, 54(3): 1747-1754.
[15] SUN H L, GAO L L, ZHAO Z X, et al. Adaptive supertwisting fast nonsingular terminal sliding mode control with ESO for high-pressure electro-pneumatic servo valve [J]. Control Engineering Practice, 2023, 134: 105483.
[16] RABIEE H, ATAEI M, EKRAMIAN M. Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems[J]. Automatica, 2019, 109: 108515.
[17] YANG J, LI S H, YU X H. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 160-169.
[18] BERNARD P. Observer design for nonlinear systems [M]. Berlin:Springer International Publishing,2019.
[19] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: The MIT Press, 2005.
[20]WU Q, DU W L. Online detection of model-plant mismatch in closed-loop systems with Gaussian processes [J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2213-2222.
[21] ALAKBARI F S, MOHYALDINN M E, AYOUB M A, et al. A robust Gaussian process regression-based model for the determination of static Young’s modulus for sandstone rocks[J]. Neural Computing and Applications, 2023, 35 (21): 15693-15707.
[22] BUELTA A, OLIVARES A, STAFFETTI E, et al. A Gaussian process iterative learning control for aircraft trajectory tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3962-3973.
[23] HEWING L, KABZAN J, ZEILINGER M N. Cautious model predictive control using Gaussian process regression [J]. IEEE Transactions on Control Systems Technology, 2020, 28(6): 2736-2743.
[24] LIMA G S, TRIMPE S, BESSA W M. Sliding mode control with Gaussian process regression for underwater robots [J]. Journal of Intelligent & Robotic Systems, 2020, 99 (3): 487-498.
[25] SUN Y Z, LIU J X, GAO Y B, et al. Adaptive neural tracking control for manipulators with prescribed performance under input saturation[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 1037-1046.
[26] ZHAO L, CAO X Y, LI X F. Adaptive sliding-mode control for inertial reference units via adaptive tracking differentiators[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(5): 3208-3218.
[27] ZAARE S, SOLTANPOUR M R. Adaptive fuzzy global coupled nonsingular fast terminal sliding mode control of n-rigid-link elastic-joint robot manipulators in presence of uncertainties[J]. Mechanical Systems and Signal Processing, 2022, 163: 108165.
[28]王丙琛, 司怀伟, 谭国真. 基于深度强化学习的自动驾驶车控制算法研究[J]. 郑州大学学报(工学版), 2020, 41(4): 41-45, 80.
WANG B C, SI H W, TAN G Z. Research on autopilot control algorithm based on deep reinforcement learning [J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 41-45, 80.
[29]崔建明, 蔺繁荣, 张迪, 等. 基于有向图的强化学习自动驾驶轨迹预测[J]. 郑州大学学报(工学版), 2023, 44(5): 53-61.
CUI J M, LIN F R, ZHANG D, et al. Reinforcement learning autonomous driving trajectory prediction based on directed graph[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 53-61.
[30] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL].(2017-08-28)[2024-07-16]. https:∥doi. org/10.48550/ arXiv.1707.06347.
[31] CHENG Y H, HUANG L Y, WANG X S. Authentic boundary proximal policy optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9428-9438.
[32] SHAKYA A K, PILLAI G, CHAKRABARTY S. Reinforcement learning algorithms: a brief survey[J]. Expert Systems with Applications, 2023, 231: 120495.
[33] RAJAMANI R. Vehicle dynamics and control[M]. Berlin: Springer, 2012.
[34] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.
[35] DUAN M, JIA J, ITO T. Fast terminal sliding mode control based on speed and disturbance estimation for an active suspension gravity compensation system[J]. Mechanism and Machine Theory, 2021, 155: 104073.
[36] Stable-Baselines3:PPO [EB/OL]. [2024-07-16]. https:∥stable-baselines3. readthedocs. io/en/master/ modules/ppo.html#parameters.