[1]朱 斌,马 骁,李稷丰,等.钢桥板单元分布式柔性作业车间成组调度[J].郑州大学学报(工学版),2026,47(01):41-48.[doi:10.13705/j.issn.1671-6833.2026.01.002]
 ZHU Bin,MA Xiao,LI Jifeng,et al.Distributed Flexible Job-shop Group Scheduling for Steel Bridge Plate Units[J].Journal of Zhengzhou University (Engineering Science),2026,47(01):41-48.[doi:10.13705/j.issn.1671-6833.2026.01.002]
点击复制

钢桥板单元分布式柔性作业车间成组调度()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年01期
页码:
41-48
栏目:
出版日期:
2026-01-06

文章信息/Info

Title:
Distributed Flexible Job-shop Group Scheduling for Steel Bridge Plate Units
文章编号:
1671-6833(2026)01-0041-08
作者:
朱 斌1 马 骁1 李稷丰1 雷景媛12
1.长安大学 陕西省高速公路施工机械重点实验室,陕西 西安 710064;2.西安石油大学 机械工程学院,陕西 西安 710065
Author(s):
ZHU Bin1 MA Xiao1 LI Jifeng1 LEI Jingyuan12
1.Key Laboratory of Expressway Construction Machinery of Shaanxi Province, Chang’an University, Xi’an 710064, China; 2.Mechanical Engineering College, Xi’an Shiyou University, Xi’an 710065, China
关键词:
钢桥板单元 柔性作业车间 成组调度 顺序相关 运输时间 混合遗传禁忌搜索算法
Keywords:
steel bridge plate unit flexible job-shop group scheduling sequence-dependent transportation time hybrid genetic tabu search algorithm
分类号:
TH181U445.8
DOI:
10.13705/j.issn.1671-6833.2026.01.002
文献标志码:
A
摘要:
针对钢桥板单元生产速度过慢会直接制约桥梁工程建设周期的问题,在考虑钢桥板单元的加工工艺路线和生产特点的同时,以最小化最大完工时间为目标,建立了考虑顺序相关作业切换时间和运输时间,面向钢桥板单元加工的分布式柔性作业车间成组调度(DFJGSPST)模型,并提出了基于三层编码的记忆混合遗传禁忌搜索算法(MGATS)。为验证数学模型和智能算法的可行性,以某钢桥板单元生产为例,建立了包括4种板单元组和15台机器的DFJGSPST模型,通过相应的测试算例进行实验验证,并与其他智能算法进行比较分析。实验结果表明:所提的MGATS的相对百分比差异(RPD)的均值为2.74%,低于遗传算法(GA)的3.99%和混合遗传禁忌搜索算法(GATS)的3.13%。MGATS的成功率(SR)为0.15,高于GATS和GA,验证了MGATS在求解DFJGSPST模型中的稳定性和鲁棒性。
Abstract:
To address the issue of slow production speed of steel bridge plate units, which directly constrained the construction period of bridge engineering projects, a distributed flexible job-shop group scheduling problem with setup & transportation time (DFJGSPST) model for steel bridge plate unit processing was established to minimize the maximum completion time while considering the processing technology route and production characteristics. A memory-based genetic algorithm with tabu search (MGATS) based on a three-layer encoding strategy was proposed to solve the model. To verify the feasibility of the mathematical model and intelligent algorithm, a DFJGSPST model comprising four types of plate unit groups and fifteen machines was established using a real-world steel bridge plate unit production case. Relevant test instances were selected for experimental validation and comparative analysis with other intelligent algorithms. Experimental results showed that the proposed MGATS algorithm achieved a mean relative percentage difference (RPD) of 2.74%, which was lower than that of the genetic algorithm (GA) at 3.99%, and hybrid genetic tabu search algorithm (GATS) at 3.13%. The success rate (SR) of the MGATS algorithm was 0.15, which was higher than that of the GATS algorithm and the GA algorithm, which verified the stability and robustness of the MGATS algorithm in solving the DFJGSPST model.

参考文献/References:

[1]窦金梅. 基于遗传算法的钢桥单元制造车间生产优化调度[D]. 上海: 上海交通大学, 2013.

DOU J M. Optimization of production scheduling in job shop for steel bridge panel fabrication based on genetic algorithm[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[2]XIE Y, WANG H W, LIU G, et al. Just-in-time precast production scheduling using dominance rule-based genetic algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5283-5297.
[3]KURNIADY D, DENIH A, VAGABOV M, et al. Modeling a flexible flow shop scheduling problem without unemployment by considering sequence-dependent preparation times and solving it with a meta-heuristic algorithm[J]. Industrial Engineering & Management Systems, 2022, 21(2): 291-302.
[4]HUANG X B, YANG L X. A hybrid genetic algorithm for multi-objective flexible job shop scheduling problem considering transportation time[J]. International Journal of Intelligent Computing and Cybernetics, 2019, 12 (2): 154-174.
[5]ZHANG G H, HU Y F, SUN J H, et al. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints[J]. Swarm and Evolutionary Computation, 2020, 54: 100664.
[6]LI J Q, DENG J W, LI C Y, et al. An improved Jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times[J]. KnowledgeBased Systems, 2020, 200: 106032.
[7]LI M, LEI D M. An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with transportation and sequence-dependent setup times[J]. Engineering Applications of Artificial Intelligence, 2021, 103: 104307.
[8]YUAN S P, LI T K, WANG B L. A discrete differential evolution algorithm for flow shop group scheduling problem with sequence-dependent setup and transportation times[J]. Journal of Intelligent Manufacturing, 2021, 32(2): 427-439.
[9]WANG Z Y, PAN Q K, GAO L, et al. An effective twostage iterated greedy algorithm to minimize total tardiness for the distributed flowshop group scheduling problem[J]. Swarm and Evolutionary Computation, 2022, 74: 101143.
[10] HOSSEINZADEH M R, HEYDARI M, MAHDAVI MAZDEH M. Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time[J]. Operational Research, 2022, 22(5): 5055-5105.
[11] BEHJAT S, SALMASI N. Total completion time minimisation of no-wait flowshop group scheduling problem with sequence dependent setup times[J]. European Journal of Industrial Engineering, 2017, 11(1): 22-48.
[12]周文博, 许凯峰, 杨立群, 等. 大跨径自锚式悬索桥钢箱梁制造技术[J]. 公路交通科技, 2021, 38(增刊1): 96-100.
ZHOU W B, XU K F, YANG L Q, et al. Manufacturing technology of steel box girder of long-span self-anchored suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2021, 38 ( S1 ): 96100.
[13] GU X L, HUANG M, LIANG X. A discrete particle swarm optimization algorithm with adaptive inertia weight for solving multiobjective flexible job-shop scheduling problem[J]. IEEE Access, 2020, 8: 33125-33136.
[14] LU M S, ROMANOWSKI R. Multicontextual dispatching rules for job shops with dynamic job arrival[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1): 19-33.
[15] LI B, XIA X W. A self-adjusting search domain methodbased genetic algorithm for solving flexible job shop scheduling problem[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 4212556.
[16]李长云, 谷鹏飞, 林多. 基于改进遗传算法的多目标柔性作业调度研究[J]. 制造技术与机床, 2022(5): 47-52.
LI C Y, GU P F, LIN D. Research on multi-objective flexible job scheduling based on improved genetic algorithm[J]. Manufacturing Technology & Machine Tool, 2022(5): 47-52.
[17]张超勇, 饶运清, 刘向军, 等. 基于POX交叉的遗传算法求解Job-Shop调度问题[J]. 中国机械工程, 2004, 15(23): 2149-2153.
ZHANG C Y, RAO Y Q, LIU X J, et al. An improved genetic algorithm for the job shop scheduling problem[J]. China Mechanical Engineering, 2004, 15(23): 2149-2153.
[18] XU W X, HU Y W, LUO W, et al. A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission[J]. Computers & Industrial Engineering, 2021, 157: 107318.
[19] BŁAZ ·EWICZ J, FINKE G, HAUPT R, et al. New trends in machine scheduling[J]. European Journal of Operational Research, 1988, 37(3): 303-317.
[20]WANG B L, HUANG K, LI T K. Permutation flowshop scheduling with time lag constraints and makespan criterion[J]. Computers & Industrial Engineering, 2018, 120: 1-14.
[21]袁帅鹏, 李铁克, 王柏琳. 无关并行机类型混合流水车间成组调度问题的改进候鸟优化算法[J]. 计算机集成制造系统, 2022, 28(12): 3912-3922.
YUAN S P, LI T K, WANG B L. Enhanced migrating birds optimization algorithm for hybrid flowshop group scheduling problem with unrelated parallel machines[J]. Computer Integrated Manufacturing Systems, 2022, 28(12): 3912-3922.

更新日期/Last Update: 2026-01-17