[1]潘公宇,熊浩东.基于最佳滑移率估计的汽车EMB防抱死控制[J].郑州大学学报(工学版),2026,47(01):58-65.[doi:10.13705/j.issn.1671-6833.2025.04.017]
 PAN Gongyu,XIONG Haodong.Automotive EMB Anti-lock Control Based on Optimal Slip Rate Estimation[J].Journal of Zhengzhou University (Engineering Science),2026,47(01):58-65.[doi:10.13705/j.issn.1671-6833.2025.04.017]
点击复制

基于最佳滑移率估计的汽车EMB防抱死控制()
分享到:

《郑州大学学报(工学版)》[ISSN:1671-6833/CN:41-1339/T]

卷:
47
期数:
2026年01期
页码:
58-65
栏目:
出版日期:
2026-01-06

文章信息/Info

Title:
Automotive EMB Anti-lock Control Based on Optimal Slip Rate Estimation
文章编号:
1671-6833(2026)01-0058-08
作者:
潘公宇 熊浩东
江苏大学 汽车与交通工程学院,江苏 镇江 212013
Author(s):
PAN Gongyu XIONG Haodong
School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
关键词:
最佳滑移率 电子机械制动 ABS 估计算法 积分滑模控制
Keywords:
optimal slip rate electro-mechanical braking ABS estimation algorithm integral sliding mode control
分类号:
U463.5TP273
DOI:
10.13705/j.issn.1671-6833.2025.04.017
文献标志码:
A
摘要:
为了解决传统的逻辑门限式ABS控制方法存在无法充分利用路面利用附着系数以及滑移率波动较大的问题,提出了一种基于最佳滑移率估计的汽车EMB防抱死控制策略。首先,建立轮胎滑移率与路面利用附着系数之间的非线性模型;其次,通过一种分段式的估计算法来快速准确地跟踪最佳滑移率;最后,基于最佳滑移率的估计结果,设计了积分滑模控制器,通过精确调节EMB制动力矩和电机制动力矩,使前后轮的滑移率维持在各自的最佳滑移率,保证车辆在不同路面条件下的最佳制动距离。仿真结果表明:所采用的估计算法都能够快速准确识别当前路面的最佳滑移率,估计出的最佳滑移率在稳态时与实际的最佳滑移率的最大误差不超过3%,且积分滑模控制器可以精确控制滑移率保持在最佳滑移率附近,与CarSim内置的ABS控制策略相比,单一路面工况制动总时间缩短了10.8%,制动总距离减少了15.8%,对接路面工况制动总时间缩短了18.0%,制动总距离减少了22.2%。
Abstract:
The traditional logic threshold-based ABS control method failed to fully utilize the road adhesion coefficient and caused significant slip rate fluctuations during operation. To address this issue, an automotive EMB antilock control strategy based on optimal slip rate estimation was proposed. The proposed strategy initially established a nonlinear model between tire slip rate and road utilization adhesion coefficient, and then employed a segmented estimation algorithm to rapidly and accurately track the optimal slip rate. Subsequently, based on the estimated optimal slip rate, an integral sliding mode controller was designed. By precisely adjusting the EMB braking torque and electric braking torque, the slip rates of the front and rear wheels were maintained at their respective optimal slip rates, ensuring optimal braking distances for automotives under various road conditions. Simulation results indicated that the employed estimation algorithm was capable of identifying the optimal slip rate of the current road surface rapidly and accurately, with the maximum error between the estimated optimal slip rate and the actual optimal slip rate at steady state not exceeding 3%. Furthermore, the integral sliding mode controller could precisely control the slip rate to remain near the optimal slip rate. Compared to the ABS control strategy built into CarSim, the total braking time in a single road condition scenario was shortened by 10.8%, and the total braking distance was reduced by 15.8%. For docking pavement conditions, the total braking time was shortened by 18.0%, and the total braking distance was reduced by 22.2%.

参考文献/References:

[1]陈烨强. 浅谈EMB线控制动系统控制策略研究[J]. 内燃机与配件, 2023(17): 76-78.

CHEN Y Q. Research on control strategy of EMB line control system[J]. Internal Combustion Engine & Parts, 2023(17): 76-78.
[2]黄会茹. 浅谈ABS汽车防抱死制动系统[C]∥第十三届河南省汽车工程科技学术研讨会.信阳: 河南省汽车工程学会, 2016: 113-114.
HUANG H R. A brief discussion on ABS automotive anti lock braking system[C]∥ The 13th Henan Province Automotive Engineering Technology Academic Symposium. Xinyang: Society of Automotive Engineers of Henan, 2016: 113-114.
[3]孙鹏鹏. 紧急制动工况下四轮轮毂电动汽车的滑移率控制策略研究[D]. 长春: 吉林大学, 2022:24-33.
SUN P P. Research on slip rate control strategy of four inwheel motors electric vehicle under emergency braking condition[D]. Changchun: Jilin University, 2022:24-33.
[4]KIM C S, HAHN J O, HONG K S, et al. Estimation of tire-road friction based on onboard 6-DoF acceleration measurement[J]. IEEE Transactions on Vehicular Technology, 2015, 64(8): 3368-3377.
[5]DEVADIGA S S, GAURKAR P V, VIVEKANANDAN G, et al. A computationally and data-efficient reference slip estimation algorithm for antilock brake system[C]∥2023 9th International Conference on Control, Decision and Information Technologies (CoDIT). Piscataway: IEEE, 2023: 471-476.
[6]DINÇMEN E. Adaptive extremum seeking scheme for ABS control[C]∥2014 13th International Workshop on Variable Structure Systems (VSS). Piscataway: IEEE, 2014: 1-6.
[7]KIM M H, PARK J, CHOI S. Road type identification ahead of the tire using D-CNN and reflected ultrasonic signals[J]. International Journal of Automotive Technology, 2021, 22(1): 47-54.
[8]WANG H L, WANG J N, PI D W, et al. Optimization of commercial vehicle mechatronics composite ABS braking control considering braking efficiency and energy regeneration[J]. IEEE transactions on transportation electrification, 2024: 3421303.
[9]尹安东, 李聪聪. 电动汽车ABS最优滑移率滑模控制研究[J]. 汽车科技, 2018(2): 8-14.
YIN A D, LI C C. Research on optimal slip control for ABS of electric vehicle based on sliding mode control[J]. Auto Sci-Tech, 2018(2): 8-14.
[10]朱振华. 独立驱动/制动电动汽车制动能量回收优化控制策略研究[D]. 长春: 吉林大学, 2023.
ZHU Z H. Research on braking energy recovery optimal control strategy of independent drive/brake electric vehicle[D]. Changchun: Jilin University, 2023.
[11]潘公宇, 徐申. 考虑道路识别的四驱电动汽车再生制动策略[J]. 江苏大学学报(自然科学版), 2024, 45(1): 1-7.
PAN G Y, XU S. Regenerative braking control strategy of four-wheel drive electric vehicle considering road identification[J]. Journal of Jiangsu University (Natural Science Edition), 2024, 45(1): 1-7.
[12]WANG J C, HE R. Varying charge voltage in the steps control method of ABS for in-wheel motors driven electric vehicles based on an improved LQG scheme[J]. IEEE Access, 2018, 6: 15039-15050.
[13]夏利红. 基于EMB的分布式复合制动系统研究[D]. 重庆: 重庆大学,2019.
XIA L H. The study on distributed hybrid braking system based on EMB[D]. Chongqing: Chongqing University, 2019.
[14]潘公宇, 徐豪晖, 刘志强, 等. 汽车电子机械制动系统的ABS自抗扰控制[J]. 重庆理工大学学报(自然科学), 2024, 38(6): 55-62.
PAN G Y, XU H H, LIU Z Q, et al. ABS automatic disturbance rejection control of automotive electronic mechanical braking system[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(6): 55-62.
[15]刘志强, 陈玉锦, 陈林. 电子机械制动器的间隙调控方法[J]. 兵工学报, 2022, 43(7): 1478-1487.
LIU Z Q, CHEN Y J, CHEN L. A gap control method for electromechanical brakes[J]. Acta Armamentarii, 2022, 43(7): 1478-1487.
[16]余志生. 汽车理论[M]. 6版. 北京: 机械工业出版社, 2019: 115-117.
YU Z S. Automobile theory[M]. 6th ed. Beijing: China Machine Press, 2019: 115-117.
[17] ZHANG J H, SUN W C, JING H H. Nonlinear robust control of antilock braking systems assisted by active suspensions for automobile[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1352-1359.
[18]申超. 基于路面识别的四轮轮毂电机电动汽车驱动防滑控制策略研究[D]. 成都: 电子科技大学, 2016: 3336.
SHEN C. Study on acceleration slip regulation control strategy of four-wheel independent drive electric vehicle based on road identification[D]. Chengdu: University of Electronic Science and Technology of China, 2016: 33-36.
[19]何仁, 冯海鹏. 基于峰值附着系数曲面的路面辨识算法[J]. 吉林大学学报(工学版), 2020, 50(4): 1245-1256.
HE R, FENG H P. Road surface identification algorithm based on peak adhesion coefficient surface[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1245-1256.
[20]何仁, 李梦琪. 基于路面识别的复合制动与ABS集成控制策略[J]. 江苏大学学报(自然科学版), 2020, 41(1): 20-26.
HE R, LI M Q. Integrated control strategy of combined braking system and ABS based on road identification[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(1): 20-26.

更新日期/Last Update: 2026-01-17